Datasheet
TPS65910, TPS65910A, TPS65910A3, TPS659101, TPS659102, TPS659103
TPS659104, TPS659105, TPS659106, TPS659107, TPS659108, TPS659109
www.ti.com
SWCS046T –MARCH 2010–REVISED SEPTEMBER 2013
Any (not masked or masked) interrupt detection causes a POWER ON enable condition during a fixed delay
t
DOINT1
(only) when the device is in OFF state (when NRESPWON signal is low). Any (not masked) interrupt
detection is causing a device wakeup from SLEEP state up to acknowledge of the pending interrupt. Any of the
interrupt sources can be masked by programming the INT_MSK_REG register. When an interrupt is masked, its
corresponding interrupt status bit is still updated, but the INT1 flag is not activated.
Interrupt source masking can be used to mask a device switch-on event. Because interrupt flag active is a
POWER ON enable condition during t
DOINT1
delay, any interrupt not masked must be cleared to allow turn off of
the device after the t
DOINT1
POWER ON enable pulse duration.. See section: Interrupts, for interrupt sources
definition.
SDASR_EN2 and SCLSR_EN1
SDASR_EN2 and SCLSR_EN1 are the data and clock signals of the serial control interface (SR-I
2
C) dedicated
to SmartReflex applications. These signals can also be programmed to be used as enable signals of one or
several supplies, when the device is on (NRESPWRON high). A resource assigned to SDASR_EN2 or
SCLSR_EN1 control automatically disables the serial control interface.
Programming EN1_LDO_ASS_REG, EN2_LDO_REG, and SLEEP_KEEP_LDO_ON_REG registers:
SCLSR_EN1 and SDASR_EN2 signals can be used to control the turn on/off or sleep state of any LDO type
supplies.
Programming EN1_SMPS_ASS_REG, EN2_SMPS_ASS_REG, and SLEEP_KEEP_RES_ON registers:
SCLSR_EN1 and SDASR_EN2 signals can be used to control the turn on/off or low-power state (PFM mode) of
SMPS type supplies.
SDASR_EN2 and SCLSR_EN1 can be used to set output voltage of VDD1 and VDD2 SMPS from a roof to a
floor value, preprogrammed in the VDD1_OP_REG, VDD2_OP_REG, and teh VDD1_SR_REG, VDD2_SR_REG
registers. Tun-off of VDD1 and VDD2 can also be programmed either in VDD1_OP_REG, VDD2_OP_REG or in
VDD1_SR_REG, VDD2_SR_REG registers.
When a supply is controlled through SCLSR_EN1 or SCLSR_EN2 signals, its state is no longer driven by the
device SLEEP state.
GPIO_CKSYNC
GPIO_CKSYNC is a configurable open-drain digital I/O: directivity, debouncing delay and internal pullup can be
programmed in the GPIO0_REG register. GPIO_CKSYNC cannot be used to turn on the device (OFF-to-ACTIVE
state transition), even if its associated interrupt is not masked, but can be used as an interrupt source to wake up
the device from SLEEP-to-ACTIVE state.
Programming DCDCCKEXT = 1, VDD1, VDD2, VIO, and VDD3 dc-dc switching can be synchronized using a 3-
MHz clock set though the GPIO_CKSYNC pin.
DYNAMIC VOLTAGE FREQUENCY SCALING AND ADAPTIVE VOLTAGE SCALING OPERATION
Dynamic voltage frequency scaling (DVFS) operation: a supply voltage value corresponding to a targeted
frequency of the digital core supplied is programmed in VDD1_OP_REG or VDD2_OP_REG registers.
The slew rate of the voltage supply reaching a new VDD1_OP_REG or VDD2_OP_REG programmed value is
limited to 12.5 mV/µs, fixed value. Adaptative voltage scaling (AVS) operation: a supply voltage value
corresponding to a supply voltage adjustment is programmed in VDD1_SR_REG or VDD2_SR_REG registers.
The supply voltage is then intended to be tuned by the digital core supplied, based its performance self-
evaluation. The slew rate of VDD1 or VDD2 voltage supply reaching a new programmed value is programmable
though the VDD1_REG or VDD2_REG register, respectively.
A serial control interface (SR-I
2
C) is dedicated to SmartReflex applications such as DVFS and class 3 AVS, and
thus gives access to the VDD1_OP_REG, VDD1_SR_REG, and VDD2_OP_REG, VDD2_SR_REG register.
A general-purpose serial control interface (CTL-I
2
C) also gives access to these registers, if SR_CTL_I2C_SEL
control bit is set to 1 in the DEVCTRL_REG register (default inactive).
Both control interfaces are compliant with HS-I
2
C specification (100 kbps, 400 kbps, or 3.4 Mbps).
Figure 14 shows an example of a SmartReflex operation. To optimize power efficiency, the voltage domains of
the host processor uses the DVFS and AVS features provided by SmartReflex.
Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 45
Product Folder Links: TPS65910 TPS65910A TPS65910A3 TPS659101 TPS659102 TPS659103 TPS659104
TPS659105 TPS659106 TPS659107 TPS659108 TPS659109