Datasheet

Vin
min
+ Vout
min
) Iout
max
ǒ
r
DS(on)
max ) R
L
Ǔ
TPS65020
SLVS607C SEPTEMBER 2005 REVISED SEPTEMBER 2011
www.ti.com
If the load is below the delivered current then the output voltage rises until the same threshold is crossed in the
other direction. All switching activity ceases, reducing the quiescent current to a minimum until the output voltage
has again dropped below the threshold. The power save mode is exited, and the converter returns to PWM mode
if either of the following conditions are met:
1. the output voltage drops 2% below the nominal V
O
due to increasing load current
2. the PFM burst time exceeds 16 × 1/fs (10.67 μs typical).
These control methods reduce the quiescent current to typically 14 μA per converter, and the switching activity to
a minimum, thus achieving the highest converter efficiency. Setting the comparator thresholds at the nominal
output voltage at light load current results in a low output voltage ripple. The ripple depends on the comparator
delay and the size of the output capacitor. Increasing capacitor values makes the output ripple tend to zero. The
PSM is disabled through the I
2
C interface to force the individual converters to stay in fixed frequency PWM
mode.
LOW RIPPLE MODE
Setting Bit 3 in register CON-CTRL to 1 enables the low ripple mode for all of the dc-dc converters if operated in
PFM mode. For an output current less than approximately 10 mA, the output voltage ripple in PFM mode is
reduced, depending on the actual load current. The lower the actual output current on the converter, the lower
the output ripple voltage. For an output current above 10 mA, there is only minor difference in output voltage
ripple between PFM mode and low ripple PFM mode. As this feature also increases switching frequency, it is
used to keep the switching frequency above the audible range in PFM mode down to a low output current.
SOFT START
Each of the three converters has an internal soft start circuit that limits the inrush current during start-up. The soft
start is realized by using a very low current to initially charge the internal compensation capacitor. The soft start
time is typically 750 μs if the output voltage ramps from 5% to 95% of the final target value. If the output is
already precharged to some voltage when the converter is enabled, then this time is reduced proportionally.
There is a short delay of typically 170 μs between the converter being enabled and switching activity starting.
The delay allows the converter to bias itself properly, to recognize if the output is precharged, and if so to prevent
discharging of the output while the internal soft start ramp catches up with the output voltage.
100% DUTY CYCLE LOW DROPOUT OPERATION
The TPS65020 converters offer a low input to output voltage difference while still maintaining operation with the
use of the 100% duty cycle mode. In this mode the P-channel switch is constantly turned on. This is particularly
useful in battery-powered applications to achieve longest operation time by taking full advantage of the whole
battery voltage range. The minimum input voltage required to maintain dc regulation depends on the load current
and output voltage. It is calculated as:
(3)
with:
Iout
max
= maximum load current (Note: ripple current in the inductor is zero under these conditions)
r
DS(on)
max = maximum P-channel switch r
DS(on)
R
L
= DC resistance of the inductor
Vout
min
= nominal output voltage minus 2% tolerance limit
24 Submit Documentation Feedback Copyright © 20052011, Texas Instruments Incorporated
Product Folder Link(s) : TPS65020