Datasheet
Heavy Load transient step
Vo
PFM mode at light load
current
PWM mode
Comparator High
Comparator low
Absolute Voltage drop
with positioning
3.5%
3%
2.5%
TPS63020
TPS63021
www.ti.com
SLVS916C –JULY 2010–REVISED MARCH 2013
Figure 22. Power-Save Mode Thresholds and Dynamic Voltage Positioning
Dynamic voltage positioning
As detailed in Figure 22, the output voltage is typically 3% above the nominal output voltage at light load
currents, as the device is in Power Save Mode. This gives additional headroom for the voltage drop during a load
transient from light load to full load. This allows the converter to operate with a small output capacitor and still
have a low absolute voltage drop during heavy load transient changes. See Figure 22 for detailed operation of
the power save mode
Dynamic Current Limit
To protect the device and the application, the average inductor current is limited internally on the IC. At nominal
operating conditions, this current limit is constant. The current limit value can be found in the electrical
characteristics table. If the supply voltage at VIN drops below 2.3V, the current limit is reduced. This can happen
when the input power source becomes weak. Increasing output impedance, when the batteries are almost
discharged, or an additional heavy pulse load is connected to the battery can cause the VIN voltage to drop. The
dynamic current limit has its lowest value when reaching the minimum recommended supply voltage at VIN. At
this voltage, the device is forced into burst mode operation trying to stay active as long as possible even with a
weak input power source.
If the die temperature increases above the recommended maximum temperature, the dynamic current limit
becomes active. Similar to the behavior when the input voltage at VIN drops, the current limit is reduced with
temperature increasing.
Device Enable
The device is put into operation when EN is set high. It is put into a shutdown mode when EN is set to GND. In
shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load is
disconnected from the input. This means that the output voltage can drop below the input voltage during
shutdown. During start-up of the converter, the duty cycle and the peak current are limited in order to avoid high
peak currents flowing from the input.
Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: TPS63020 TPS63021