Datasheet
+
2.2 Fm
2.2 Fm 0.1 Fm
332kW
61.9kW
0.01 Fm 90.9kW
C2 C3
C4
R3
R4
CSS
RT
U1
TPS54160DGQ
C1
0.1 Fm
L1
10 Hm
D1
B220A
C
OUT
47 F/6.3Vm
CF
6.8pF
RC
76.8kW
CC
2700pF
R1
31.6kW
R2
10kW
VIN
BOOT
EN
SS/TR
RT/CLK
PwPd
PWRGD
VSNS
COMP
GND
PH
8-18V
3.3Vat1.5 A
TPS54160
SLVS795E –OCTOBER 2008–REVISED SEPTEMBER 2013
www.ti.com
APPLICATION INFORMATION
Design Guide — Step-By-Step Design Procedure
This example details the design of a high frequency switching regulator design using ceramic output capacitors.
A few parameters must be known in order to start the design process. These parameters are typically determined
at the system level. For this example, we will start with the following known parameters:
Output Voltage 3.3 V
Transient Response 0 to 1.5A load step ΔV
OUT
= 4%
Maximum Output Current 1.5 A
Input Voltage 12 V nom. 8 V to 18 V
Output Voltage Ripple < 33 mV
pp
Start Input Voltage (rising VIN) 7.7 V
Stop Input Voltage (falling VIN) 6.7 V
Selecting the Switching Frequency
The first step is to decide on a switching frequency for the regulator. Typically, the user will want to choose the
highest switching frequency possible since this will produce the smallest solution size. The high switching
frequency allows for lower valued inductors and smaller output capacitors compared to a power supply that
switches at a lower frequency. The switching frequency that can be selected is limited by the minimum on-time of
the internal power switch, the input voltage and the output voltage and the frequency shift limitation.
Equation 12 and Equation 13 must be used to find the maximum switching frequency for the regulator, choose
the lower value of the two equations. Switching frequencies higher than these values will result in pulse skipping
or the lack of overcurrent protection during a short circuit.
The typical minimum on time, t
onmin
, is 130 ns for the TPS54160. For this example, the output voltage is 3.3 V
and the maximum input voltage is 18 V, which allows for a maximum switch frequency up to 1600 kHz when
including the inductor resistance, on resistance and diode voltage in Equation 12. To ensure overcurrent
runaway is not a concern during short circuits in your design use Equation 13 or the solid curve in Figure 42 to
determine the maximum switching frequency. With a maximum input voltage of 20 V, for some margin above 18
V, assuming a diode voltage of 0.5 V, inductor resistance of 100 mΩ, switch resistance of 200mΩ, a current limit
value of 2.7 A, the maximum switching frequency is approximately 2500kHz.
Choosing the lower of the two values and adding some margin a switching frequency of 1200 kHz is used. To
determine the timing resistance for a given switching frequency, use Equation 11 or the curve in Figure 40.
The switching frequency is set by resistor R
t
shown in Figure 51.
Figure 51. High Frequency, 3.3V Output Power Supply Design with Adjusted UVLO.
28 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated
Product Folder Links: TPS54160