Datasheet
Table Of Contents
- FEATURES
- APPLICATIONS
- DESCRIPTION
- ABSOLUTE MAXIMUM RATINGS
- THERMAL INFORMATION
- ELECTRICAL CHARACTERISTICS
- DEVICE INFORMATION
- TYPICAL CHARACTERISTICS
- OVERVIEW
- DETAILED DESCRIPTION
- Fixed Frequency PWM Control
- Slope Compensation Output Current
- Pulse Skip Eco-Mode
- Low Dropout Operation and Bootstrap Voltage (BOOT)
- Error Amplifier
- Voltage Reference
- Adjusting the Output Voltage
- Enable and Adjusting Undervoltage Lockout
- Slow Start/Tracking Pin (SS/TR)
- Overload Recovery Circuit
- Sequencing
- Constant Switching Frequency and Timing Resistor (RT/CLK Pin)
- Overcurrent Protection and Frequency Shift
- Selecting the Switching Frequency
- How to Interface to RT/CLK Pin
- Power Good (PWRGD Pin)
- Overvoltage Transient Protection
- Thermal Shutdown
- Small Signal Model for Loop Response
- Simple Small Signal Model for Peak Current Mode Control
- Small Signal Model for Frequency Compensation
- APPLICATION INFORMATION
- Design Guide — Step-By-Step Design Procedure
- Selecting the Switching Frequency
- Output Inductor Selection (LO)
- Output Capacitor
- Catch Diode
- Input Capacitor
- Slow Start Capacitor
- Bootstrap Capacitor Selection
- Under Voltage Lock Out Set Point
- Output Voltage and Feedback Resistors Selection
- Compensation
- Discontinuous Mode and Eco Mode Boundary
- APPLICATION CURVES
- Power Dissipation Estimate
- Layout
- Revision History

BOOT
VIN
EN
SS/TR
RT/CLK
PH
GND
COMP
VSENSE
PWRGD
Input
Bypass
Capacitor
UVLO
Adjust
Resistors
SlowStart
Capacitor
Frequency
SetResistor
Compensation
Network
Resistor
Divider
Output
Inductor
Output
Capacitor
Vout
Vin
Topside
Ground
Area
Catch
Diode
RouteBootCapacitor
Traceonanotherlayerto
providewidepathfor
topsideground
ThermalVIA
SignalVIA
TPS54060
www.ti.com
SLVS919A –JANUARY 2009–REVISED JULY 2010
Layout
Layout is a critical portion of good power supply design. There are several signals paths that conduct fast
changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise
or degrade the power supplies performance. To help eliminate these problems, the VIN pin should be bypassed
to ground with a low ESR ceramic bypass capacitor with X5R or X7R dielectric. Care should be taken to
minimize the loop area formed by the bypass capacitor connections, the VIN pin, and the anode of the catch
diode. See Figure 63 for a PCB layout example. The GND pin should be tied directly to the power pad under the
IC and the power pad.
The power pad should be connected to any internal PCB ground planes using multiple vias directly under the IC.
The PH pin should be routed to the cathode of the catch diode and to the output inductor. Since the PH
connection is the switching node, the catch diode and output inductor should be located close to the PH pins,
and the area of the PCB conductor minimized to prevent excessive capacitive coupling. For operation at full rated
load, the top side ground area must provide adequate heat dissipating area. The RT/CLK pin is sensitive to noise
so the RT resistor should be located as close as possible to the IC and routed with minimal lengths of trace. The
additional external components can be placed approximately as shown. It may be possible to obtain acceptable
performance with alternate PCB layouts, however this layout has been shown to produce good results and is
meant as a guideline.
Figure 63. PCB Layout Example
Estimated Circuit Area
The estimated printed circuit board area for the components used in the design of Figure 50 is 0.55 in
2
. This area
does not include test points or connectors.
Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 39
Product Folder Link(s): TPS54060