Datasheet
12
17
16
6
15
14
13
11
V5IN
TPS51216
S3
S5
VREF
VBST
DRVH
SW
DRVL
8
10
REFIN
PGND
7
19
GND
MODE
18 TRIP
20
9
2
3
PGOOD
VDDQSNS
VLDOIN
VTT
1
4
5
VTTSNS
VTTGND
VTTREF
UDG-13089
VDDQ
S5
PGND
5VIN
PGND
VIN
AGND
Powergood
PGND
1 kW
PGND
PGND
0.22 mF
AGND
TPS51216
www.ti.com
SLUSAB9A –NOVEMBER 2010–REVISED APRIL 2013
VTT and VTTREF
TPS51216 integrates two high performance, low-drop-out linear regulators, VTT and VTTREF, to provide
complete DDR2/DDR3/DDR3L power solutions. The VTTREF has a 10-mA sink/source current capability, and
tracks ½ of VDDQSNS with ±1% accuracy using an on-chip ½ divider. A 0.22-μF (or larger) ceramic capacitor
must be connected close to the VTTREF terminal for stable operation. The VTT responds quickly to track
VTTREF within ±40 mV at all conditions, and the current capability is 2 A for both sink and source. A 10-μF (or
larger) ceramic capacitor(s) need to be connected close to the VTT terminal for stable operation. To achieve tight
regulation with minimum effect of wiring resistance, a remote sensing terminal, VTTSNS, should be connected to
the positive node of VTT output capacitor(s) as a separate trace from the high-current line to the VTT pin.
(Please refer to the Layout Considerations section for details.)
When VTT is not required in the design, the following treatments are strongly recommended.
• Connect VLDOIN to VDDQ.
• Tie VTTSNS to VTT, and remove capacitors from VTT to float.
• Connect VTTGND to GND.
• Select MODE 0 or MODE 1 shown in Table 2 (Select Non-tracking discharge mode).
• Maintain a 0.22-µF capacitor connected at VTTREF.
• Pull-down S3 to GND with 1-kΩ resistance.
Figure 32. Application Circuit When VTT Is Not Required
Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links :TPS51216