Datasheet

TPS40192, TPS40193
www.ti.com
SLUS719E MARCH 2007REVISED MAY 2013
Pre-Bias Startup
The TPS40192/3 contains a unique circuit to prevent current from being pulled from the output during startup in
the condition the output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level
(internal soft-start becomes greater than feedback voltage [V
FB
]), the controller slowly activates synchronous
rectification by starting the first LDRV pulses with a narrow on-time. It then increments that on-time on a cycle-
by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This
scheme prevents the initial sinking of the pre-bias output, and ensures that the out voltage (V
OUT
) starts and
ramps up smoothly into regulation and the control loop is given time to transition from pre-biased startup to
normal mode operation with minimal disturbance to the output voltage. The amount of time from the start of
switching until the low-side MOSFET is turned on for the full (1-D) interval is defined by 32 clock cycles.
Drivers
The drivers for the external HDRV and LDRV MOSFETs are capable of driving a gate-to-source voltage of 5 V.
The LDRV driver switches between VDD and GND, while HDRV driver is referenced to SW and switches
between BOOT and SW. The drivers have non-overlapping timing that is governed by an adaptive delay circuit to
minimize body diode conduction in the synchronous rectifier. The drivers are capable of driving MOSFETS that
are appropriate for a 15-A (TPS40192) or 20-A (TPS40193) converter.
Power Good
The TPS40192/3 provides an indication that output power is good for the converter. This is an open drain signal
and pulls low when any condition exists that would indicate that the output of the supply might be out of
regulation. These conditions include:
V
FB
is more than ±10% from nominal
soft-start is active
an undervoltage condition exists for the device
a short circuit condition has been detected
die temperature is over (145°C)
NOTE
When there is no power to the device, PGOOD is not able to pull close to GND if an
auxiliary supply is used for the power good indication. In this case, a built in resistor
connected from drain to gate on the PGOOD pull down device makes the PGOOD pin
look approximately like a diode to GND.
Thermal Shutdown
If the junction temperature of the device reaches the thermal shutdown limit of 145°C, the PWM and the oscillator
are turned off and HDRV and LDRV are driven low, turning off both FETs. When the junction cools to the
required level (125°C nominal), the PWM inititates soft start as during a normal power up cycle.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: TPS40192 TPS40193