Datasheet
Table Of Contents
- 1 Digital Media System-on-Chip (DMSoC)
- Table of Contents
- 2 Revision History
- 3 Device Overview
- 3.1 Device Characteristics
- 3.2 Device Compatibility
- 3.3 ARM Subsystem
- 3.3.1 ARM926EJ-S RISC CPU
- 3.3.2 CP15
- 3.3.3 MMU
- 3.3.4 Caches and Write Buffer
- 3.3.5 Tightly Coupled Memory (TCM)
- 3.3.6 Advanced High-Performance Bus (AHB)
- 3.3.7 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
- 3.3.8 ARM Memory Mapping
- 3.3.9 Peripherals
- 3.3.10 PLL Controller (PLLC)
- 3.3.11 Power and Sleep Controller (PSC)
- 3.3.12 ARM Interrupt Controller (AINTC)
- 3.3.13 System Module
- 3.3.14 Power Management
- 3.4 DSP Subsystem
- 3.5 Memory Map Summary
- 3.6 Pin Assignments
- 3.7 Terminal Functions
- 3.8 Device Support
- 3.9 Documentation Support
- 3.10 Community Resources
- 4 Device Configurations
- 4.1 System Module Registers
- 4.2 Power Considerations
- 4.3 Clock Considerations
- 4.4 Boot Sequence
- 4.5 Configurations At Reset
- 4.6 Configurations After Reset
- 4.7 Multiplexed Pin Configurations
- 4.7.1 Pin Muxing Selection At Reset
- 4.7.2 Pin Muxing Selection After Reset
- 4.7.3 Pin Multiplexing Details
- 4.7.3.1 PCI, HPI, EMIFA, and ATA Pin Muxing
- 4.7.3.2 PWM Signal Muxing
- 4.7.3.3 TSIF0 Input Signal Muxing (Serial/Parallel)
- 4.7.3.4 TSIF0 Output Signal Muxing (Serial/Parallel)
- 4.7.3.5 TSIF1 Input Signal Muxing (Serial Only)
- 4.7.3.6 TSIF1 Output Signal Muxing (Serial Only)
- 4.7.3.7 CRGEN Signal Muxing
- 4.7.3.8 UART0 Pin Muxing
- 4.7.3.9 UART1 Pin Muxing
- 4.7.3.10 UART2 Pin Muxing
- 4.7.3.11 ARM/DSP Communications Interrupts
- 4.7.3.12 Emulation Control
- 4.8 Debugging Considerations
- 5 System Interconnect
- 6 Device Operating Conditions
- 7 Peripheral Information and Electrical Specifications
- 7.1 Parameter Information
- 7.2 Recommended Clock and Control Signal Transition Behavior
- 7.3 Power Supplies
- 7.4 External Clock Input From DEV_MXI/DEV_CLKIN and AUX_MXI/AUX_CLKIN Pins
- 7.5 Clock PLLs
- 7.6 Enhanced Direct Memory Access (EDMA3) Controller
- 7.7 Reset
- 7.8 Interrupts
- 7.9 External Memory Interface (EMIF)
- 7.10 DDR2 Memory Controller
- 7.10.1 DDR2 Memory Controller Electrical Data/Timing
- 7.10.2 DDR2 Interface
- 7.10.2.1 DDR2 Interface Schematic
- 7.10.2.2 Compatible JEDEC DDR2 Devices
- 7.10.2.3 PCB Stackup
- 7.10.2.4 Placement
- 7.10.2.5 DDR2 Keep Out Region
- 7.10.2.6 Bulk Bypass Capacitors
- 7.10.2.7 High-Speed Bypass Capacitors
- 7.10.2.8 Net Classes
- 7.10.2.9 DDR2 Signal Termination
- 7.10.2.10 VREF Routing
- 7.10.2.11 DDR2 CK and ADDR_CTRL Routing
- 7.11 Video Port Interface (VPIF)
- 7.12 Transport Stream Interface (TSIF)
- 7.13 Clock Recovery Generator (CRGEN)
- 7.14 Video Data Conversion Engine (VDCE)
- 7.15 Peripheral Component Interconnect (PCI)
- 7.16 Ethernet MAC (EMAC)
- 7.17 Management Data Input/Output (MDIO)
- 7.18 Host-Port Interface (HPI) Peripheral
- 7.19 USB 2.0 [see Note]
- 7.20 ATA Controller
- 7.21 VLYNQ
- 7.22 Multichannel Audio Serial Port (McASP0/1) Peripherals
- 7.23 Serial Peripheral Interface (SPI)
- 7.24 Universal Asynchronouse Receiver/Transmitter (UART)
- 7.25 Inter-Integrated Circuit (I2C)
- 7.26 Pulse Width Modulator (PWM)
- 7.27 Timers
- 7.28 General-Purpose Input/Output (GPIO)
- 7.29 IEEE 1149.1 JTAG
- 8 Mechanical Packaging and Orderable Information

TMS320DM6467T
www.ti.com
SPRS605C –JULY 2009–REVISED JUNE 2012
7.3 Power Supplies
For more information regarding TI's power management products and suggested devices to power TI
DSPs, visit www.ti.com/processorpower.
7.3.1 Power-Supply Sequencing
The DM6467T includes one core supply (CV
DD
), and two I/O supplies—DV
DD33
and DV
DDR2
. To ensure
proper device operation, a specific power-up sequence must be followed. Some TI power-supply devices
include features that facilitate power sequencing—for example, Auto-Track and Slow-Start/Enable
features. For more information on TI power supplies and their features, visit www.ti.com/processorpower.
Here is a summary of the power sequencing requirements:
• The power ramp order must be CV
DD
before DV
DDR2
, and DV
DDR2
before DV
DD33
—meaning during
power up, the voltage at the DV
DDR2
rail should never exceed the voltage at the CV
DD
rail. Similarly,
the voltage at the DV
DDD33
rail should never exceed the voltage at the DV
DDR2
rail.
• From the time that power ramp begins, all power supplies (CV
DD
, DV
DDR2
, DV
DD33
) must be stable
within 200 ms. The term "stable" means reaching the recommended operating condition (see
Section 6.2, Recommended Operating Conditions table).
7.3.2 Power-Supply Design Considerations
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize
inductance and resistance in the power delivery path. Additionally, when designing for high-performance
applications utilizing the DM6467T device, the PC board should include separate power planes for core,
I/O, and ground; all bypassed with high-quality low-ESL/ESR capacitors.
7.3.3 Power-Supply Decoupling
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as
possible close to the DM6467T. These caps need to be close to the DM6467T power pins, no more than
1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better but need to
be evaluated from a yield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the
decoupling capacitors, therefore physically smaller capacitors should be used while maintaining the largest
available capacitance value.
Larger caps for each supply can be placed further away for bulk decoupling. Large bulk caps (on the order
of 100 μF) should be furthest away, but still as close as possible. Large caps for each supply should be
placed outside of the BGA footprint.
As with the selection of any component, verification of capacitor availability over the product's production
lifetime should be considered.
For more details on capacitor usage and placement, see the Implementing DDR2 PCB Layout on the
TMS320DM646x DMSoC Application Report (literature number SPRAAM1A).
7.3.4 DM6467T Power and Clock Domains
The DM6467T includes one single power domain — the "Always On" power domain. The "Always On"
power domain is always on when the chip is on. The "Always On" domain is powered by the CV
DD
pins of
the DM6467T. All DM6467T modules lie within the "Always On" power domain. Table 7-1 provides a
listing of the DM6467T clock domains.
Two primary reference clocks are required for the DM6467T device. These can either be crystal inputs or
driven by external oscillators. A 33-MHz or 33.3-MHz crystal is recommended for the system PLLs, which
generate the internal clocks for the ARM926, DSP, HDVICPs, peripherals, and the EDMA3. A 24- or 48-
MHz crystal is also required if the USB (24-MHz only) or UART (either 24- or 48-MHz) peripherals are to
be used. In addition, the 24- or 48-MHz input clock can be used to source the McASPs' clocks. For further
description of the DM6467T clock domains, see Table 7-2 and Figure 7-4.
Copyright © 2009–2012, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 141
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T