Datasheet
F28M36P63C, F28M36P53C, F28M36H53C, F28M36H53B, F28M36H33C, F28M36H33B
SPRS825C –OCTOBER 2012–REVISED FEBRUARY 2014
www.ti.com
3.12.3 C28x STANDBY Mode
In STANDBY Mode, the C28x processor stops executing instructions and the C28CLKIN, C28CPUCLK,
and C28SYSCLK are turned off. Exit from STANDBY Mode is accomplished by one of 64 GPIOs from the
GPIO_MUX1 block, or MTOCIPCINT1 (interrupt from MTOC IPC peripheral). The wakeup GPIO selected
inside the GPIO_MUX block enters the Qualification Block as the LPMWAKE signal. Inside the
Qualification Block, the LPMWAKE signal is sampled per the QUALSTDBY bits (bits [7:2] of the
CPCLKCR0 register) before propagating into the wake request logic.
Cortex-M3 should use CLPMSTAT register bits to tell the C28x to go into STANDBY mode before going
into Deep Sleep mode. Otherwise, the clock to the C28x will be turned off suddenly when the control
software is not expecting this clock to shut off. When the device is in Deep Sleep/STANDBY mode, wake-
up should happen only from the Master Subsystem, since all C28x clocks are off (C28CLKIN,
C28CPUCLK, C28SYSCLK), thus preventing the C28x from waking up first.
Upon exit from STANDBY Mode, the C28CLKIN, C28SYSCLK, and C28CPUCLK are restored. If the
LPMWAKE interrupt is enabled, the LPMWAKE ISR is executed. Next, the C28x processor starts fetching
instructions from a location immediately following the IDLE instruction that originally triggered the
STANDBY Mode.
NOTE
For GPIO_MUX1 pins PF6_GPIO38 and PG6_GPIO46, only the corresponding USB function
is available on silicon revision 0 devices (GPIO and other functions listed in Table 4-1 are not
available).
62 Device Overview Copyright © 2012–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: F28M36P63C F28M36P53C F28M36H53C F28M36H53B F28M36H33C F28M36H33B