Datasheet
Table Of Contents

³ ´
2
L
C
2
V
IN
V
OUT
GND
L1
C1
C2
GND
Enable
V
IN
V
OUT
TLV61225
SLVSAF0 –AUGUST 2010
www.ti.com
(2)
Layout Considerations
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.
To lay out the ground, it is recommended to use short traces as well, separated from the power ground traces.
This avoids ground shift problems, which can occur due to superimposition of power ground current and control
ground current. Assure that the ground traces are connected close to the device GND pin.
Figure 12. PCB Layout Suggestion
THERMAL INFORMATION
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added
heat sinks and convection surfaces, and the presence of other heat-generating components affect the
power-dissipation limits of a given component.
Three basic approaches for enhancing thermal performance are listed below.
• Improving the power-dissipation capability of the PCB design
• Improving the thermal coupling of the component to the PCB
• Introducing airflow in the system
For more details on how to use the thermal parameters in the dissipation ratings table please check the Thermal
Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).
12 Submit Documentation Feedback Copyright © 2010, Texas Instruments Incorporated