Datasheet

TLV2322, TLV2322Y, TLV2324, TLV2324Y
LinCMOS LOW-VOLTAGE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS187 – FEBRUARY 1997
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLV232x operational amplifier, attempts to measure the input bias
current can result in erroneous readings. The bias current at normal ambient temperature is typically less than
1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid
erroneous measurements:
Isolate the device from other potential leakage sources. Use a grounded shield around and between the
device inputs (see Figure 38). Leakages that would otherwise flow to the inputs are shunted away.
Compensate for the leakage of the test socket by actually performing an input bias current test (using a
picoammeter) with no device in the test socket. The actual input bias current can then be calculated by
subtracting the open-socket leakage readings from the readings obtained with a device in the test
socket.
Many automatic testers as well as some bench-top operational amplifier testers use the servo-loop
technique with a resistor in series with the device input to measure the input bias current (the voltage
drop across the series resistor is measured and the bias current is calculated). This method requires
that a device be inserted into a test socket to obtain a correct reading; therefore, an open-socket reading
is not feasible using this method.
V = V
IC
8
5
1
4
Figure 38. Isolation Metal Around Device Inputs
(P package)
low-level output voltage
To obtain low-level supply-voltage operation, some compromise is necessary in the input stage. This
compromise results in the device low-level output voltage being dependent on both the common-mode input
voltage level as well as the differential input voltage level. When attempting to correlate low-level output
readings with those quoted in the electrical specifications, these two conditions should be observed. If
conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet.
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure the temperature coefficient of input offset voltage.
This parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device
and the test socket. This moisture results in leakage and contact resistance that can cause erroneous input
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the
moisture also covers the isolation metal itself, thereby rendering it useless. These measurements should be
performed at temperatures above freezing to minimize error.
full-power response
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is