Datasheet
Table Of Contents
- FEATURES
- APPLICATIONS
- DESCRIPTION
- DESCRIPTION (continued)
- ABSOLUTE MAXIMUM RATINGS
- DISSIPATION RATINGS
- RECOMMENDED OPERATING CONDITIONS
- ELECTRICAL CHARACTERISTICS: VS+ = 3.3 V
- ELECTRICAL CHARACTERISTICS: VS+ = 5 V
- TIMING REQUIREMENTS
- FUNCTIONAL BLOCK DIAGRAM
- PIN CONFIGURATION
- TYPICAL CHARACTERISTICS
- TYPICAL CHARACTERISTICS: VS+ = 3.3 V
- TYPICAL CHARACTERISTICS: VS+ = 5 V
- APPLICATION INFORMATION
- OPERATING VOLTAGE
- INPUT OVERVOLTAGE PROTECTION
- TYPICAL CONFIGURATION and VIDEO TERMINOLOGY
- INPUT MODES OF OPERATION: DC
- INPUT MODES OF OPERATION: DC + 135-mV SHIFT
- INPUT MODES OF OPERATION: AC BIAS
- INPUT MODES OF OPERATION: AC SYNC-TIP-CLAMP
- OUTPUT MODES OF OPERATION: DC COUPLED
- OUTPUT MODES OF OPERATION: AC-COUPLED
- OUTPUT MODES OF OPERATION: AC-COUPLED WITH SAG CORRECTION
- INCREASING GAIN
- LOW-PASS FILTER AND BYPASS MODES
- BENEFITS OF THS7303 OVER PASSIVE FILTERING
- I2C INTERFACE NOTES
- GENERAL I2C PROTOCOL
- I2C DESIGN NOTES: ISSUES AND SOLUTIONS
- SLAVE ADDRESS
- CHANNEL SELECTION REGISTER DESCRIPTION (SUB-ADDRESS)
- CHANNEL REGISTER BIT DESCRIPTIONS
- EXAMPLE: WRITING TO THE THS7303
- EXAMPLE: READING FROM THE THS7303
- EVALUATION MODULE
- EVM BOARD LAYERS
- Revision History

SCL
SDA
DataLine
Stable;
DataValid
ChangeofData Allowed
Start
Condition
ClockPulsefor
Acknowledgement
Acknowledge
Not Acknowledge
DataOutput
byReceiver
DataOutput
byTransmitter
SCL From
Master
S
1 2
8 9
SCL
SDA
MSB
Slave Address Data
Stop
1 2 3 4 5 6 7 8 99 1 2 3 4 5 6 7 8 9
Acknowledge Acknowledge
THS7303
www.ti.com
SLOS479B –OCTOBER 2005– REVISED MARCH 2011
Figure 72. I
2
C Bit Transfer
Figure 73. I
2
C Acknowledge
Figure 74. I
2
C Address and Data Cycles
During a write cycle, the transmitting device must not drive the SDA signal line during the acknowledge cycle, so
that the receiving device may drive the SDA signal low. After each byte transfer following the address byte, the
receiving device pulls the SDA line low for one SCL clock cycle. A stop condition is initiated by the transmitting
device after the last byte is transferred. An example of a write cycle can be found in Figure 75 and Figure 76.
Note that the THS7303 does not allow multiple write transfers to occur. See the Example: Writing to the
THS7303 section for the proper procedure on writing to the THS7303.
Copyright © 2005–2011, Texas Instruments Incorporated Submit Documentation Feedback 39
Product Folder Link(s): THS7303