Datasheet

TAS5713
SLOS637A DECEMBER 2009REVISED AUGUST 2010
www.ti.com
The TAS5713 has robust clock error handling that uses the built-in trimmed oscillator clock to quickly detect
changes/errors. Once the system detects a clock change/error, it mutes the audio (through a single-step mute)
and then forces PLL to limp using the internal oscillator as a reference clock. Once the clocks are stable, the
system autodetects the new rate and revert to normal operation. During this process, the default volume is
restored in a single step (also called hard unmute). The ramp process can be programmed to ramp back slowly
(also called soft unmute) as defined in volume register (0x0E).
SERIAL DATA INTERFACE
Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5713 DAP accepts serial data in
16-, 20-, or 24-bit left-justified, right-justified, and I
2
S serial data formats.
PWM SECTION
The TAS5713 DAP device uses noise-shaping and customized nonlinear correction algorithms to achieve high
power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to
increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from the DAP
and outputs two BTL PWM audio output channels.
The PWM section has individual-channel dc-blocking filters that can be enabled and disabled. The filter cutoff
frequency is less than 1 Hz. Individual-channel de-emphasis filters for 44.1 kHz and 48 kHz are included and can
be enabled and disabled.
Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%.
For a detailed description of using audio processing features like DRC and EQ, see the User's Guide and
TAS570X GDE software development tool documentation.
SERIAL INTERFACE CONTROL AND TIMING
I
2
S Timing
I
2
S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the
right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or
64 × f
S
is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes
state to the first bit of data on the data lines. The data is written MSB-first and is valid on the rising edge of bit
clock. The DAP masks unused trailing data bit positions.
24 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5713