Datasheet

 
     
  
SCBS683H − MARCH 1997 − REVISED OCTOBER 2003
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description/ordering information (continued)
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high
or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive
the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus
lines without need for interface or pullup components.
OE
does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state.
When V
CC
is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE
should be tied to V
CC
through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
These devices are fully specified for hot-insertion applications using I
off
and power-up 3-state. The I
off
circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
FUNCTION TABLE
(each flip-flop)
INPUTS
OUTPUT
OE CLK D
OUTPUT
Q
L H H
L LL
L H or L X Q
0
H X X Z
logic diagram (positive logic)
OE
To Seven Other Channels
1
11
3
2
CLK
1D
C1
1D
1Q