Datasheet
SN65HVD82
SLLSED6 –OCTOBER 2012
www.ti.com
DESIGN AND LAYOUT CONSIDERATIONS FOR TRANSIENT PROTECTION
On-chip IEC-ESD protection is good for laboratory and portable equipment but never sufficient for EFT and surge
transients occurring in industrial environments. Therefore robust and reliable bus node design requires the use of
external transient protection devices.
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-
frequency layout techniques must be applied during PCB design.
In order for your PCB design to be successful start with the design of the protection circuit in mind.
1. Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your
board.
2. Use Vcc and ground planes to provide low-inductance. Note that high-frequency currents follow the path of
least inductance and not the path of least impedance.
3. Design the protection components into the direction of the signal path. Do not force the transients currents to
divert from the signal path to reach the protection device.
4. Apply 100 nF to 220 nF bypass capacitors as close as possible to the Vcc-pins of transceiver, UART,
controller ICs on the board.
5. Use at least two vias for Vcc and ground connections of bypass capacitors and protection devices to
minimize effective via-inductance.
6. Use 1k to 10k pull-up/down resistors for enable lines to limit noise currents in theses lines during transient
events.
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified
maximum voltage of the transceiver bus terminals. These resistors limit the residual clamping current into the
transceiver and prevent it from latching up.
8. While pure TVS protection is sufficient for surge transients up to 1kV, higher transients require metal-oxide
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient
blocking units (TBUs) that limit transient current to some 200 mA.
ISOLATED BUS NODE DESIGN
Many RS-485 networks use isolated bus nodes to prevent the creation of unintended ground loops and their
disruptive impact on signal integrity. An isolated bus node typically includes a micro controller that connects to
the bus transceiver via a multi-channel, digital isolator (Figure 23).
18 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
Product Folder Links: SN65HVD82