Datasheet

R = 3 k
Load
W
AV
CC
C = 100 pF
Load
2
DAC Output
R
O/P(DAC12.x)
I
Load
Conversion 1 Conversion 2
V
OUT
Conversion 3
Glitch
Energy
±1/2 LSB
±1/2 LSB
t
settleLH
t
settleHL
MSP430F6638, MSP430F6637, MSP430F6636
MSP430F6635, MSP430F6634, MSP430F6633
MSP430F6632, MSP430F6631, MSP430F6630
www.ti.com
SLAS566D JUNE 2010REVISED AUGUST 2013
12-Bit DAC, Reference Input Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
AV
CC
AV
CC
DAC12IR = 0
(1) (2)
/ 3 + 0.2
Reference input voltage
VeREF+ 2.2 V, 3 V V
range
AV
CC
DAC12IR = 1
(3) (4)
AV
CC
+ 0.2
DAC12_0 IR = DAC12_1 IR = 0 20 M
DAC12_0 IR = 1, DAC12_1 IR = 0 48
Ri
(VREF+)
,
Reference input resistance
(5)
2.2 V, 3 V
DAC12_0 IR = 0, DAC12_1 IR = 1 48
Ri
(VeREF+)
k
DAC12_0 IR = DAC12_1 IR = 1,
24
DAC12_0 SREFx = DAC12_1 SREFx
(6)
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
(2) The maximum voltage applied at reference input voltage terminal VeREF+ = [AV
CC
V
E(O)
] / [3 × (1 + E
G
)].
(3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
(4) The maximum voltage applied at reference input voltage terminal VeREF+ = [AV
CC
V
E(O)
] / (1 + E
G
).
(5) This impedance depends on tradeoff in power savings. Current devices have 48 k for each channel when divide is enabled. Can be
increased if performance can be maintained.
(6) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel
reducing the reference input resistance.
12-Bit DAC, Dynamic Specifications
V
REF
= V
CC
, DAC12IR = 1 (see Figure 20 and Figure 21), over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
MIN TYP MAX UNIT
DAC12AMPx = 0 {2, 3, 4} 60 120
DAC12_xDAT = 800h,
t
ON
DAC12 on time Error
V(O)
< ± 0.5 LSB
(1)
DAC12AMPx = 0 {5, 6} 2.2 V, 3 V 15 30 µs
(see Figure 20)
DAC12AMPx = 0 7 6 12
DAC12AMPx = 2 100 200
DAC12_xDAT =
t
S(FS)
Settling time, full scale DAC12AMPx = 3, 5 2.2 V, 3 V 40 80 µs
80h F7Fh 80h
DAC12AMPx = 4, 6, 7 15 30
DAC12AMPx = 2 5
DAC12_xDAT =
Settling time, code to
t
S(C-C)
3F8h 408h 3F8h, DAC12AMPx = 3, 5 2.2 V, 3 V 2 µs
code
BF8h C08h BF8h
DAC12AMPx = 4, 6, 7 1
DAC12AMPx = 2 0.05 0.35
DAC12_xDAT =
SR Slew rate DAC12AMPx = 3, 5 2.2 V, 3 V 0.35 1.10 V/µs
80h F7Fh 80h
(2)
DAC12AMPx = 4, 6, 7 1.50 5.20
DAC12_xDAT =
Glitch energy DAC12AMPx = 7 2.2 V, 3 V 35 nV-s
800h 7FFh 800h
(1) R
Load
and C
Load
connected to AV
SS
(not AV
CC
/2) in Figure 20.
(2) Slew rate applies to output voltage steps 200 mV.
Figure 20. Settling Time and Glitch Energy Testing
Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 79
Product Folder Links: MSP430F6638 MSP430F6637 MSP430F6636 MSP430F6635 MSP430F6634 MSP430F6633
MSP430F6632 MSP430F6631 MSP430F6630