Datasheet

C
BOOST
=
Q
g
VCC
20 x
LM5035
www.ti.com
SNVS428G JANUARY 2006REVISED MARCH 2013
If the current sense resistor method is used, the over-current condition will only be sensed while LO is driving the
low-side MOSFET. Over-current while HO is driving the high-side MOSFET will not be detected. In this
configuration, it will take 4 times as long for continuous cycle-by-cycle current limiting to initiate a restart event
since each over-current event during LO enables the 22µA RES pin current source for one oscillator period, and
then the lack of an over-current event during HO enables the 12µA RES pin current sink for one oscillator period.
The time average of this toggling is equivalent to a continuous A current source into the RES capacitor,
increasing the delay by a factor of four. The value of the RES capacitor can be reduced to decrease the time
before restart cycle is initiated.
When using the resistor current sense method, an imbalance in the input capacitor voltages may develop when
operating in cycle-by-cycle current limiting mode. If the imbalance persists for an extended period, excessive
currents in the non-sensed MOSFET, and possible transformer saturation may result. This condition is inherent
to the half-bridge topology operated with cycle-by-cycle current limiting and is compounded by only sensing in
one leg of the half-bridge circuit. The imbalance is greatest at large duty cycles (low input voltages). If using this
method, it is recommended that the capacitor on the RES pin be no larger than 220 pF. Check the final circuit
and reduce the RES capacitor further, or omit the capacitor completely to ensure the voltages across the bridge
capacitors remain balanced. The current limit value may decrease slightly as the RES capacitor is reduced.
HO, HB, HS and LO
Attention must be given to the PC board layout for the low-side driver and the floating high-side driver pins HO,
HB and HS. A low ESR/ESL capacitor (such as a ceramic surface mount capacitor) should be connected close
to the LM5035, between HB and HS to provide high peak currents during turn-on of the high-side MOSFET. The
capacitor should be large enough to supply the MOSFET gate charge (Qg) without discharging to the point
where the drop in gate voltage affects the MOSFET R
DS(ON)
. A value ten to twenty times Qg is recommended.
(6)
The diode (D
BOOST
) that charges C
BOOST
from VCC when the low-side MOSFET is conducting should be capable
of withstanding the full converter input voltage range. When the high-side MOSFET is conducting, the reverse
voltage at the diode is approximately the same as the MOSFET drain voltage because the high-side driver is
boosted up to the converter input voltage by the HS pin, and the high side MOSFET gate is driven to the HS
voltage plus VCC. Since the anode of D
BOOST
is connected to VCC, the reverse potential across the diode is
equal to the input voltage minus the VCC voltage. D
BOOST
average current is less than 20mA in most
applications, so a low current ultra-fast recovery diode is recommended to limit the loss due to diode junction
capacitance. Schottky diodes are also a viable option, particularly for lower input voltage applications, but
attention must be paid to leakage currents at high temperatures.
The internal gate drivers need a very low impedance path to the respective decoupling capacitors; the VCC cap
for the LO driver and C
BOOST
for the HO driver. These connections should be as short as possible to reduce
inductance and as wide as possible to reduce resistance. The loop area, defined by the gate connection and its
respective return path, should be minimized.
The high-side gate driver can also be used with HS connected to PGND for applications other than a half bridge
converter (e.g. Push-Pull). The HB pin is then connected to VCC, or any supply greater than the high-side driver
undervoltage lockout (approximately 6.5V). In addition, the high-side driver can be configured for high voltage
offline applications where the high-side MOSFET gate is driven via a gate drive transformer.
Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: LM5035