Datasheet
O
IN DC
I D
I
K
in
max
V
L
di
dt
'
§ ·
¨ ¸
© ¹
2
rms rip
D
2
I ESR
P
n
LM2742
www.ti.com
SNVS266C –MARCH 2004–REVISED MARCH 2013
DESIGN CONSIDERATIONS
The following is a design procedure for all the components needed to create the circuit shown in Figure 32 in the
Example Circuits section, a 5V in to 1.2V out converter, capable of delivering 10A with an efficiency of 85%. The
switching frequency is 300kHz. The same procedures can be followed to create many other designs with varying
input voltages, output voltages, and output currents.
Input Capacitor
The input capacitors in a Buck switching converter are subjected to high stress due to the input current
waveform, which is a square wave. Hence input caps are selected for their ripple current capability and their
ability to withstand the heat generated as that ripple current runs through their ESR. Input rms ripple current is
approximately:
png (7)
The power dissipated by each input capacitor is:
(8)
Here, n is the number of capacitors, and indicates that power loss in each cap decreases rapidly as the number
of input caps increase. The worst-case ripple for a Buck converter occurs during full load, when the duty cycle D
= 50%.
In the 5V to 1.2V case, D = 1.2/5 = 0.24. With a 10A maximum load the ripple current is 4.3A. The Sanyo
10MV5600AX aluminum electrolytic capacitor has a ripple current rating of 2.35A, up to 105°C. Two such
capacitors make a conservative design that allows for unequal current sharing between individual caps. Each
capacitor has a maximum ESR of 18mΩ at 100 kHz. Power loss in each device is then 0.05W, and total loss is
0.1W. Other possibilities for input and output capacitors include MLCC, tantalum, OSCON, SP, and POSCAPS.
Input Inductor
The input inductor serves two basic purposes. First, in high power applications, the input inductor helps insulate
the input power supply from switching noise. This is especially important if other switching converters draw
current from the same supply. Noise at high frequency, such as that developed by the LM2742 at 1MHz
operation, could pass through the input stage of a slower converter, contaminating and possibly interfering with
its operation.
An input inductor also helps shield the LM2742 from high frequency noise generated by other switching
converters. The second purpose of the input inductor is to limit the input current slew rate. During a change from
no-load to full-load, the input inductor sees the highest voltage change across it, equal to the full load current
times the input capacitor ESR. This value divided by the maximum allowable input current slew rate gives the
minimum input inductance:
(9)
In the case of a desktop computer system, the input current slew rate is the system power supply or "silver box"
output current slew rate, which is typically about 0.1A/µs. Total input capacitor ESR is 9mΩ, hence ΔV is
10*0.009 = 90 mV, and the minimum inductance required is 0.9µH. The input inductor should be rated to handle
the DC input current, which is approximated by:
(10)
In this case I
IN-DC
is about 2.8A. One possible choice is the TDK SLF12575T-1R2N8R2, a 1.2µH device that can
handle 8.2Arms, and has a DCR of 7mΩ.
Copyright © 2004–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM2742