Datasheet
Table Of Contents
- 1 Device Overview
- Table of Contents
- 2 Revision History
- 3 Device Comparison
- 4 Terminal Configuration and Functions
- 4.1 PGE QFP Package Pinout (144-Pin)
- 4.2 ZWT BGA Package Ball-Map (337 Ball Grid Array)
- 4.3 Terminal Functions
- 4.3.1 PGE Package
- 4.3.1.1 Multibuffered Analog-to-Digital Converters (MibADC)
- 4.3.1.2 Enhanced High-End Timer Modules (N2HET)
- 4.3.1.3 Enhanced Capture Modules (eCAP)
- 4.3.1.4 Enhanced Quadrature Encoder Pulse Modules (eQEP)
- 4.3.1.5 Enhanced Pulse-Width Modulator Modules (ePWM)
- 4.3.1.6 General-Purpose Input / Output (GPIO)
- 4.3.1.7 Controller Area Network Controllers (DCAN)
- 4.3.1.8 Local Interconnect Network Interface Module (LIN)
- 4.3.1.9 Standard Serial Communication Interface (SCI)
- 4.3.1.10 Inter-Integrated Circuit Interface Module (I2C)
- 4.3.1.11 Standard Serial Peripheral Interface (SPI)
- 4.3.1.12 Multibuffered Serial Peripheral Interface Modules (MibSPI)
- 4.3.1.13 Ethernet Controller
- 4.3.1.14 USB Host and Device Port Controller Interface
- 4.3.1.15 System Module Interface
- 4.3.1.16 Clock Inputs and Outputs
- 4.3.1.17 Test and Debug Modules Interface
- 4.3.1.18 Flash Supply and Test Pads
- 4.3.1.19 Supply for Core Logic: 1.2V nominal
- 4.3.1.20 Supply for I/O Cells: 3.3V nominal
- 4.3.1.21 Ground Reference for All Supplies Except VCCAD
- 4.3.2 ZWT Package
- 4.3.2.1 Multibuffered Analog-to-Digital Converters (MibADC)
- 4.3.2.2 Enhanced High-End Timer Modules (N2HET)
- 4.3.2.3 Enhanced Capture Modules (eCAP)
- 4.3.2.4 Enhanced Quadrature Encoder Pulse Modules (eQEP)
- 4.3.2.5 Enhanced Pulse-Width Modulator Modules (ePWM)
- 4.3.2.6 General-Purpose Input / Output (GPIO)
- 4.3.2.7 Controller Area Network Controllers (DCAN)
- 4.3.2.8 Local Interconnect Network Interface Module (LIN)
- 4.3.2.9 Standard Serial Communication Interface (SCI)
- 4.3.2.10 Inter-Integrated Circuit Interface Module (I2C)
- 4.3.2.11 Standard Serial Peripheral Interface (SPI)
- 4.3.2.12 Multibuffered Serial Peripheral Interface Modules (MibSPI)
- 4.3.2.13 Ethernet Controller
- 4.3.2.14 USB Host and Device Port Controller Interface
- 4.3.2.15 External Memory Interface (EMIF)
- 4.3.2.16 System Module Interface
- 4.3.2.17 Clock Inputs and Outputs
- 4.3.2.18 Test and Debug Modules Interface
- 4.3.2.19 Flash Supply and Test Pads
- 4.3.2.20 Reserved
- 4.3.2.21 No Connects
- 4.3.2.22 Supply for Core Logic: 1.2V nominal
- 4.3.2.23 Supply for I/O Cells: 3.3V nominal
- 4.3.2.24 Ground Reference for All Supplies Except VCCAD
- 4.3.1 PGE Package
- 5 Specifications
- 5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range
- 5.2 ESD Ratings
- 5.3 Power-On Hours (POH)
- 5.4 Device Recommended Operating Conditions
- 5.5 Switching Characteristics Over Recommended Operating Conditions for Clock Domains
- 5.6 Wait States Required
- 5.7 Power Consumption Over Recommended Operating Conditions
- 5.8 Input/Output Electrical Characteristics Over Recommended Operating Conditions
- 5.9 Thermal Resistance Characteristics
- 5.10 Output Buffer Drive Strengths
- 5.11 Input Timings
- 5.12 Output Timings
- 5.13 Low-EMI Output Buffers
- 6 System Information and Electrical Specifications
- 6.1 Device Power Domains
- 6.2 Voltage Monitor Characteristics
- 6.3 Power Sequencing and Power On Reset
- 6.4 Warm Reset (nRST)
- 6.5 ARM Cortex-R4F CPU Information
- 6.6 Clocks
- 6.7 Clock Monitoring
- 6.8 Glitch Filters
- 6.9 Device Memory Map
- 6.10 Flash Memory
- 6.11 Tightly Coupled RAM Interface Module
- 6.12 Parity Protection for Accesses to Peripheral RAMs
- 6.13 On-Chip SRAM Initialization and Testing
- 6.14 External Memory Interface (EMIF)
- 6.15 Vectored Interrupt Manager
- 6.16 DMA Controller
- 6.17 Real Time Interrupt Module
- 6.18 Error Signaling Module
- 6.19 Reset / Abort / Error Sources
- 6.20 Digital Windowed Watchdog
- 6.21 Debug Subsystem
- 7 Peripheral Information and Electrical Specifications
- 7.1 Enhanced Translator PWM Modules (ePWM)
- 7.1.1 ePWM Clocking and Reset
- 7.1.2 Synchronization of ePWMx Time Base Counters
- 7.1.3 Synchronizing all ePWM Modules to the N2HET1 Module Time Base
- 7.1.4 Phase-Locking the Time-Base Clocks of Multiple ePWM Modules
- 7.1.5 ePWM Synchronization with External Devices
- 7.1.6 ePWM Trip Zones
- 7.1.7 Triggering of ADC Start of Conversion Using ePWMx SOCA and SOCB Outputs
- 7.1.8 Enhanced Translator-Pulse Width Modulator (ePWMx) Timings
- 7.2 Enhanced Capture Modules (eCAP)
- 7.3 Enhanced Quadrature Encoder (eQEP)
- 7.4 Multibuffered 12bit Analog-to-Digital Converter
- 7.5 General-Purpose Input/Output
- 7.6 Enhanced High-End Timer (N2HET)
- 7.7 Controller Area Network (DCAN)
- 7.8 Local Interconnect Network Interface (LIN)
- 7.9 Serial Communication Interface (SCI)
- 7.10 Inter-Integrated Circuit (I2C)
- 7.11 Multibuffered / Standard Serial Peripheral Interface
- 7.12 Ethernet Media Access Controller
- 7.13 Universal Serial Bus (USB) Host and Device Controllers
- 7.1 Enhanced Translator PWM Modules (ePWM)
- 8 Device and Documentation Support
- 9 Mechanical Packaging and Orderable Information
- Important Notice
- 1518515_DS2.pdf

CPU 1 CPU 2
2cycledelay
2cycledelay
CCM-R4
CCM-R4
compare
CPU1CLK
CPU2CLK
compare
error
Input+Control
Output+Control
RM46L852
www.ti.com
SPNS185C –SEPTEMBER 2012–REVISED JUNE 2015
6.5.4 Duplicate clock tree after GCLK
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU
running at the same frequency and in phase to the clock of CPU1. See Figure 6-3.
6.5.5 ARM Cortex-R4F CPU Compare Module (CCM-R4) for Safety
This device has two ARM Cortex-R4F CPU cores, where the output signals of both CPUs are compared in
the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed in
a different way as shown in the figure below.
Figure 6-3. Dual Core Implementation
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of
both CPUs before the registers are used, including function calls where the register values are pushed
onto the stack.
6.5.6 CPU Self-Test
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the
Deterministic Logic BIST Controller as the test engine.
The main features of the self-test controller are:
• Ability to divide the complete test run into independent test intervals
• Capable of running the complete test as well as running few intervals at a time
• Ability to continue from the last executed interval (test set) as well as ability to restart from the
beginning (First test set)
• Complete isolation of the self-tested CPU core from rest of the system during the self-test run
• Ability to capture the Failure interval number
• Timeout counter for the CPU self-test run as a fail-safe feature
Copyright © 2012–2015, Texas Instruments Incorporated System Information and Electrical Specifications 67
Submit Documentation Feedback
Product Folder Links: RM46L852