Datasheet

150
TMS320F28379S
,
TMS320F28377S
TMS320F28376S, TMS320F28375S, TMS320F28374S
SPRS881C AUGUST 2014REVISED MAY 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: TMS320F28379S TMS320F28377S TMS320F28376S TMS320F28375S TMS320F28374S
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.10.5 Serial Peripheral Interface (SPI)
The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of
programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.
The SPI is normally used for communications between the microcontroller and external peripherals or
another controller. Typical applications include external I/O or peripheral expansion through devices such
as shift registers, display drivers, and ADCs. Multidevice communications are supported by the
master/slave operation of the SPI. The port supports 16-level receive and transmit FIFOs for reducing
CPU servicing overhead.
The SPI module features include:
SPISOMI: SPI slave-output/master-input pin
SPISIMO: SPI slave-input/master-output pin
SPISTE: SPI slave transmit-enable pin
SPICLK: SPI serial-clock pin
Two operational modes: master and slave
Baud rate: 125 different programmable rates
Data word length: 1 to 16 data bits
Four clocking schemes (controlled by clock polarity and clock phase bits) include:
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
Simultaneous receive-and-transmit operation (transmit function can be disabled in software)
Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithms.
16-level transmit and receive FIFO
Delayed transmit control
3-wire SPI mode
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules
DMA support
High-speed mode for up to 50-MHz full-duplex communication