Datasheet
150
TMS320F28379S
,
TMS320F28377S
TMS320F28376S, TMS320F28375S, TMS320F28374S
SPRS881C –AUGUST 2014–REVISED MAY 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: TMS320F28379S TMS320F28377S TMS320F28376S TMS320F28375S TMS320F28374S
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.10.5 Serial Peripheral Interface (SPI)
The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of
programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.
The SPI is normally used for communications between the microcontroller and external peripherals or
another controller. Typical applications include external I/O or peripheral expansion through devices such
as shift registers, display drivers, and ADCs. Multidevice communications are supported by the
master/slave operation of the SPI. The port supports 16-level receive and transmit FIFOs for reducing
CPU servicing overhead.
The SPI module features include:
• SPISOMI: SPI slave-output/master-input pin
• SPISIMO: SPI slave-input/master-output pin
• SPISTE: SPI slave transmit-enable pin
• SPICLK: SPI serial-clock pin
• Two operational modes: master and slave
• Baud rate: 125 different programmable rates
• Data word length: 1 to 16 data bits
• Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
• Simultaneous receive-and-transmit operation (transmit function can be disabled in software)
• Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithms.
• 16-level transmit and receive FIFO
• Delayed transmit control
• 3-wire SPI mode
• SPISTE inversion for digital audio interface receive mode on devices with two SPI modules
• DMA support
• High-speed mode for up to 50-MHz full-duplex communication