Datasheet

DS32EL0421, DS32ELX0421
SNLS282F MAY 2008REVISED APRIL 2013
www.ti.com
LVDS INPUTS
The DS32EL0421 and DS32ELX0421 have standard 2.5V LVDS inputs which are compliant with ANSI/TIA/EIA-
644. These inputs have internal 100 termination resistors. It is recommended that the PCB trace between the
FPGA and the serializer be less than 40-inches. Longer PCB traces may degrade the quality of the input signal.
The connection between the host and the DS32EL0421 or DS32ELX0421 should be over a controlled
impedance transmission line with impedance that matches the termination resistor usually 100. Setup and
hold times are specified in the LVDS Timing Specifications, however the clock delay can be adjusted by writing
to register 30’h.
LOOP FILTER
The DS32EL0421 and DS32ELX0421 have an internal PLL which is used to generate the serialization clock from
the parallel clock input. The loop filter for this PLL is external; and for optimum results, a 100nF capacitor and a
1.5 k resistor in series should be connected between pins 26 and 27. See typical interface circuit (Figure 11).
CML LAUNCH AMPLITUDE
The launch amplitude of the CML output(s) is controlled by placing a single resistor from the VOD_CTRL pin to
ground. Use the following equation to obtain the desired V
OD
by selecting the corresponding resistor value.
R = (1400 mV / V
OD
) x 9.1 k (1)
The CML output launch amplitude can also be adjusted by writing to SMBus register 69'h, bits 2:0. This register
is meant to assist system designers during the initial prototype design phase. For final production, it is
recommended that the appropriate resistor value be selected for the desired V
OD
and that register 69'h be left to
its default value.
REMOTE SENSE
The remote sense feature can be used when a DS32EL0421 or DS32ELX0421 serializer is directly connected to
a DS32EL0124 or DS32ELX0124 deserializer. Active components in the signal path between the serializer and
the deserializer may interfere with the back channel signaling of the devices.
When remote sense is enabled, the serializer will cycle through four states to successfully establish a link and
align the data. The state diagram for the serializer is shown in Figure 7. The serializer will remain in the low
power IDLE state until it receives an input clock. Once the PLL of the serializer has locked to the input clock, the
device will enter the LINK DETECT state. While in this state, the serializer will monitor the line to see if the
deserializer is present. If a deserializer is detected, the serializer will enter the LINK ACQUISITION state. The
serializer will transmit the entire training pattern and then enter the NORMAL state. If the deserializer is unable to
successfully lock or maintain lock it will break the link, sending the serializer back to the IDLE or LINK DETECT
states.
With the Remote Sense feature active, the serializer can be forced out of lock due to events on the high speed
serial line in two ways, a serial channel reset signal is sent upstream from the deserializer or the near end
termination detect circuit signals and open termination was detected. The upstream signal sent from the
deserializer that resets the serializer is called the link detect signal. Since the serializer and deserializer may
power up at different times, the deserializer will transmit this link detect signal periodically, once it detects that a
serializer is active on the other side of the high speed line. When a serializer receives the link detect signal, it will
return to the LINK DETECT state. The near end open termination detection circuit will trigger only for near end
open termination events, such as unplugging the cable on the serializer end of the line.
DC-BALANCE ENCODER
The DS32EL0421 and DS32ELX0421 have a built-in DC-balance encoder to support AC-coupled applications.
When enabled, the input signal on TXIN4+/- is treated as a data valid bit. If TXIN4+/- is low, then the four bit
nibbles from TXIN0-TXIN3 are taken to form a 16 bit word. This 16 bit word is processed as two 8 bit words and
converted to two 10 bit words by using the standard 8b/10b data coding scheme. The two 10 bit words are then
combined to create a 20 bit code. This 20 bit word is serialized and driven on the output. The nibble taken in on
the rising edge of the clock is the most significant nibble and the nibble taken in on the falling edge is the least
significant nibble. If TXIN4+/TXIN4- is high, then the inputs TXIN0 -TXIN3 are ignored and a programmable DC-
balanced SYNC character is inserted in the output stream. The default character is a K28.5 code. In order to
send other K codes, they must first be programmed into the serializer via the SMBus. The SMBus registers
allows for only a single programmable character.
12 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated
Product Folder Links: DS32EL0421 DS32ELX0421