Datasheet
DRV8825
www.ti.com
SLVSA73E –APRIL 2010–REVISED AUGUST 2013
Table 3. Relative Current and Step Directions (continued)
FULL WINDING WINDING
ELECTRICAL
1/32 STEP 1/16 STEP 1/8 STEP 1/4 STEP 1/2 STEP STEP CURRENT CURRENT
ANGLE
70% A B
104 34% –94% 290
105 53 27 14 38% –92% 293
106 43% –90% 295
107 54 47% –88% 298
108 51% –86% 301
109 55 28 56% –83% 304
110 60% –80% 307
111 56 63% –77% 309
112 67% –74% 312
113 57 29 15 8 4 71% –71% 315
114 74% –67% 318
115 58 77% –63% 321
116 80% –60% 323
117 59 30 83% –56% 326
118 86% –51% 329
119 60 88% –47% 332
120 90% –43% 335
121 61 31 16 92% –38% 338
122 94% –34% 340
123 62 96% –29% 343
124 97% –24% 346
125 63 32 98% –20% 349
126 99% –15% 352
127 64 100% –10% 354
128 100% –5% 357
nRESET, nENBLE and nSLEEP Operation
The nRESET pin, when driven active low, resets internal logic, and resets the step table to the home position. It
also disables the H-bridge drivers. The STEP input is ignored while nRESET is active.
The nENBL pin is used to control the output drivers and enable/disable operation of the indexer. When nENBL is
low, the output H-bridges are enabled, and rising edges on the STEP pin are recognized. When nENBL is high,
the H-bridges are disabled, the outputs are in a high-impedance state, and the STEP input is ignored.
Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the
gate drive charge pump is stopped, the V3P3OUT regulator is disabled, and all internal clocks are stopped. In
this state all inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time
(approximately 1 ms) needs to pass before applying a STEP input, to allow the internal circuitry to stabilize. Note
that nRESET and nENABLE have internal pulldown resistors of approximately 100 kΩ. The nSLEEP pin has an
internal pulldown resistor of 1 MΩ. nSLEEP and nRESET signals need to be driven to logic high for device
operation.
Protection Circuits
The DRV8825 is fully protected against undervoltage, overcurrent and overtemperature events.
Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: DRV8825