Datasheet

DP83630
www.ti.com
SNLS335B OCTOBER 2010REVISED APRIL 2013
7.2.9 Code-Group Alignment
The code-group alignment module operates on unaligned 5-bit data from the descrambler (or, if the
descrambler is bypassed, directly from the NRZI/NRZ decoder) and converts it into 5B code-group data (5
bits). Code-group alignment occurs after the J/K code-group pair is detected. Once the J/K code-group
pair (11000 10001) is detected, subsequent data is aligned on a fixed boundary.
7.2.10 4B/5B Decoder
The code-group decoder functions as a look up table that translates incoming 5B code-groups into 4B
nibbles. The code-group decoder first detects the J/K code-group pair preceded by IDLE code-groups and
replaces the J/K with MAC preamble. Specifically, the J/K 10-bit code-group pair is replaced by the nibble
pair (0101 0101). All subsequent 5B code-groups are converted to the corresponding 4B nibbles for the
duration of the entire packet. This conversion ceases upon the detection of the T/R code-group pair
denoting the End of Stream Delimiter (ESD) or with the reception of a minimum of two IDLE code-groups.
7.2.11 100BASE-TX Link Integrity Monitor
The 100BASE-TX link monitor ensures that a valid and stable link is established before enabling both the
Transmit and Receive PCS layer.
Signal detect must be valid for 395 µs to allow the link monitor to enter the 'Link Up' state and enable the
transmit and receive functions.
7.2.12 Bad SSD Detection
A Bad Start of Stream Delimiter (Bad SSD) is any transition from consecutive idle code-groups to non-idle
code-groups which is not prefixed by the code-group pair /J/K.
If this condition is detected, the DP83630 will assert RX_ER and present RXD[3:0] = 1110 to the MII for
the cycles that correspond to received 5B code-groups until at least two IDLE code-groups are detected.
In addition, the False Carrier Sense Counter register (FCSCR) will be incremented by one.
Once at least two IDLE code-groups are detected, RX_ER and CRS become de-asserted.
7.3 100BASE-FX OPERATION
The DP83630 provides IEEE 802.3 compliant 100BASE-FX operation. Configuration of FX mode is via
strap option, or through the register interface.
7.3.1 100BASE-FX Transmit
In 100BASE-FX mode, the device Transmit pins connect to an industry standard Fiber Transceiver with
PECL signaling through a capacitively coupled circuit.
In FX mode, the device bypasses the Scrambler and the MLT3 encoder. This allows for the transmission
of serialized 5B4B encoded NRZI data at 125 MHz.
The only added functionality from 100BASE-TX is the support for Far-End Fault data generation.
7.3.2 100BASE-FX Receive
In 100BASE-FX mode, the device Receive pins connect to an industry standard Fiber Transceiver with
PECL signaling through a capacitively coupled circuit.
In FX mode, the device bypasses the MLT3 Decoder and the Descrambler. This allows for the reception of
serialized 5B4B encoded NRZI data at 125 MHz.
The only added functionality for 100BASE-FX from 100BASE-TX is the support of Far-End Fault detection.
Copyright © 2010–2013, Texas Instruments Incorporated Architecture 63
Submit Documentation Feedback
Product Folder Links: DP83630