Datasheet

DP83620
SNLS339C JANUARY 2011REVISED APRIL 2013
www.ti.com
The elasticity buffer will force Frame Check Sequence errors for packets which overrun or underrun the
FIFO. Underrun and overrun conditions can be reported in the RMII and Bypass Register (RBR). Table 6-
1 indicates how to program the elasticity buffer FIFO (in 4-bit increments) based on expected maximum
packet size and clock accuracy. It assumes both clocks (RMII Reference clock and far-end Transmitter
clock) have the same accuracy.
Packet lengths can be scaled linearly based on accuracy (+/- 25 ppm would allow packets twice as large).
If the threshold setting must support both 10 Mb and 100 Mb operation, the setting should be made to
support both speeds.
Table 6-1. Supported Packet Sizes at +/-50 ppm Frequency Accuracy
Latency Tolerance Recommended Packet Size at +/- 50 ppm
Start Threshold RBR[1:0]
100 Mb 10 Mb 100 Mb 10 Mb
01 (default) 2 bits 8 bits 2,400 bytes 9,600 bytes
10 6 bits 4 bits 7,200 bytes 4,800 bytes
11 10 bits 8 bits 12,000 bytes 9,600 bytes
00 14 bits 12 bits 16,800 bytes 14,400 bytes
6.2.1 RMII Master Mode
In RMII Master Mode, the DP83620 uses a 25 MHz crystal on X1/X2 and internally generates the 50 MHz
RMII reference clock for use by the RMII logic. The 50 MHz clock is output on RX_CLK, TX_CLK, and
CLK_OUT for use as the reference clock for an attached MAC. RX_CLK operates at 25 MHz during reset.
6.2.2 RMII Slave Mode
In RMII Slave Mode, the DP83620 takes a 50 MHz reference clock input on X1 from an external oscillator
or another DP83620 in RMII Master Mode. The 50 MHz is internally divided down to 25 MHz for use as
the reference clock for non-RMII logic. RX_CLK, TX_CLK, and CLK_OUT should not be used as the RMII
reference clock in this mode but may be used for other system devices.
6.3 SINGLE CLOCK MII MODE
Single Clock MII (SCMII) Mode allows MII operation using a single 25 MHz reference clock. Normal MII
Mode requires three clocks, a reference clock for physical layer functions, a transmit MII clock, and a
receive MII clock. Similar to RMII mode, Single Clock MII mode requires only the reference clock. In
addition to reducing the number of pins required, this mode allows the attached MAC device to use only
the reference clock domain. AC Timing requirements for SCMII operation are similar to the RMII timing
requirements.
For 10 Mb operation, as in RMII mode, data is sampled and driven every 10 clocks since the reference
clock is at 10 times the data rate.
Separate control bits allow enabling the Transmit and Receive Single Clock modes separately, allowing
just transmit or receive to operate in this mode. Control of Single Clock MII mode is through the RBR
register.
Single Clock MII mode incorporates the use of the RMII elasticity buffer, which is required to tolerate
potential frequency differences between the 25 MHz reference clock and the recovered receive clock.
Settings for the elasticity buffer for SCMII mode are detailed in Table 6-2.
46 MAC Interface Copyright © 2011–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: DP83620