Datasheet

AM3517, AM3505
SPRS550E OCTOBER 2009REVISED MARCH 2013
www.ti.com
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued)
NO. PARAMETER 1.8V/ 3.3V UNIT
MIN MAX
FA18 t
d(nCSV-nOEIV)
Delay time, gpmc_ncsx(13) valid to I(8) 0.2 I(8) + 2.0 ns
gpmc_noe invalid (Burst read)
FA20 t
w(AV)
Pulse duration, address valid – 2nd, 3rd, D(4) ns
and 4th accesses
FA25 t
d(nCSV-nWEV)
Delay time, gpmc_ncsx(13) valid to E(5) – 0.2 E(5) + 2.0 ns
gpmc_nwe valid
FA27 t
d(nCSV-nWEIV)
Delay time, gpmc_ncsx(13) valid to F(6) – 0.2 F(6) + 2.0 ns
gpmc_nwe invalid
FA28 t
d(nWEV-DV)
Delay time, gpmc_ new valid to data bus 2.0 ns
valid
FA29 t
d(DV-nCSV)
Delay time, data bus valid to J(9) 0.2 J(9) + 2.0 ns
gpmc_ncsx(13) valid
FA37 t
d(nOEV-AIV)
Delay time, gpmc_noe valid to 2.0 ns
gpmc_a[16:1]_d[15:0] address phase
end
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n
being the page burst access number
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(7) G = Cycle2CycleDelay * GPMC_FCLK
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *
GPMC_FCLK
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller.
118 Timing Requirements and Switching Characteristics Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM3517 AM3505