Datasheet


SLAS390BJUNE 2003 − REVISED FEBRUARY 2005
www.ti.com
29
LAYOUT
For optimum performance, care should be taken with the physical layout of the ADS8371 circuitry.
As the ADS8371 offers single-supply operation, it will often be used in close proximity with digital logic,
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the
higher the switching speed, the more difficult it is to achieve good performance from the converter.
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground
connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any
single conversion for an n-bit SAR converter, there are at least n windows in which large external transient voltages
can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic,
or high power devices.
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external
event.
On average, the ADS8371 draws very little current from an external reference as the reference voltage is internally
buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass
capacitor or capacitors without oscillation. A 0.1-µF bypass capacitor is recommended from pin 1 (REFIN) directly
to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.
The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog
ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal processor.
If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists
of an analog ground plane dedicated to the converter and associated analog circuitry.
As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from
the connection for digital logic until they are connected at the power entry point. Power to the ADS8371 should be
clean and well bypassed. A 0.1-µF ceramic bypass capacitor should be placed as close to the device as possible.
See Table 3 for the placement of the capacitor. In addition, a 1-µF to 10-µF capacitor is recommended. In some
situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor or even a Pi filter made up
of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply, removing the high frequency
noise.
Table 3. Power Supply Decoupling Capacitor Placement
POWER SUPPLY PLANE
CONVERTER ANALOG SIDE
CONVERTER DIGITAL SIDE
SUPPLY PINS
CONVERTER ANALOG SIDE
CONVERTER DIGITAL SIDE
Pin pairs that require shortest path to decoupling capacitors
(4,5), (8,9), (10,11), (13,15),
(43,44), (45,46)
(24,25)
Pins that require no decoupling 12, 14 37, 38