Datasheet
S0165-04
VCM
REFM
REFP
INTREF
INTREF
EXTREF
4kW
1kW
Internal
Reference
ADS6xxx
Full−scale differential input pp + (Voltage forced on VCM) 1.33
ADS6445, ADS6444
ADS6443, ADS6442
www.ti.com
SLAS531B –MAY 2007–REVISED DECEMBER 2009
Figure 88. Reference Section
Internal Reference
When the device is in internal reference mode, the REFP and REFM voltages are generated internally.
Common-mode voltage (1.5 V nominal) is output on VCM pin, which can be used to externally bias the analog
input pins.
External Reference
When the device is in external reference mode, the VCM acts as a reference input pin. The voltage forced on the
VCM pin is buffered and gained by 1.33 internally, generating the REFP and REFM voltages. The differential
input voltage corresponding to full-scale is given by Equation 2.
(2)
In this mode, the range of voltage applied on VCM should be 1.45 V to 1.55 V. The 1.5-V common-mode voltage
to bias the input pins has to be generated externally.
COARSE GAIN AND PROGRAMMABLE FINE GAIN
ADS644X includes gain settings that can be used to get improved SFDR performance (compared to 0 dB gain
mode). The gain settings are 3.5 dB coarse gain and programmable fine gain from 0 dB to 6 dB. For each gain
setting, the analog input full-scale range scales proportionally, as listed in Table 21.
The coarse gain is a fixed setting of 3.5 dB and is designed to improve SFDR with little degradation in SNR (as
seen in Figure 10 and Figure 11). The fine gain is programmable in 1 dB steps from 0 to 6 dB. With fine gain
also, SFDR improvement is achieved, but at the expense of SNR (there is about 1dB SNR degradation for every
1dB of fine gain).
Copyright © 2007–2009, Texas Instruments Incorporated Submit Documentation Feedback 53
Product Folder Link(s): ADS6445, ADS6444 ADS6443, ADS6442