Datasheet

ADS1293
www.ti.com
SNAS602B FEBRUARY 2013REVISED MARCH 2013
Each assertion of chip select bar (CSB) starts a new register access. The R/Wb bit in the command field
configures the direction of the access operation; a value of 0 indicates a write operation and a value of 1
indicates a read operation. All output data is driven on the falling edge of the serial clock (SCLK), and for the 16-
bit protocol, SDO read data is driven on the falling edge of clocks 8 through 15. All input data on the serial data
in (SDI) pin is sampled on the rising edge of SCLK and is written into the register on the rising edge of the 16th
clock. The user is required to deassert CSB after the 16th clock; if CSB is deasserted before the 16th clock, no
data write will occur.
Random Register Access Protocol
The 16-bit protocol is useful for random address access. CSB must be asserted during 16 clock cycles of SCLK.
Auto-incrementing Address
An access cycle may be extended to multiple registers by simply keeping the CSB asserted beyond the stated
16 clocks of the standard 16-bit protocol. In this mode, CSB must be asserted during 8*(1+N) clock cycles of
SCLK, where N is the amount of bytes to write or read during the access cycle. The auto-incrementing address
mode is useful to access a block of registers of incrementing addresses.
For example, to read the pace and ECG data registers located from address 0x30 to address 0x3F and worth 16
bytes of data, follow the next steps:
1. Execute a read command to address 0x30.
2. Extend the CSB assertion during 136 clock cycles (8+8*16).
During an auto-incrementing read access, SDO outputs the register contents every 8 clock cycles after the initial
8 clocks of the command field. During an auto-incrementing write access, the data is written to the registers
every 8 clock cycles after the initial 8 clocks of the command field.
Automatic address increment stops at address 0x4F for both write and read operations.
Streaming
A read access cycle can operate in streaming mode, also referred to as loop read back mode, by performing a
read operation from the DATA_LOOP register and extending the CSB assertion beyond the standard 16 clocks.
The streaming mode is supported for the DATA_STATUS, DATA_CH1_PACE, DATA_CH2_PACE,
DATA_CH3_PACE, DATA_CH1_ECG, DATA_CH2_ECG and DATA_CH3_ECG registers described in Pace and
ECG Data Read Back Registers. The streaming mode is useful to access the block of pace and ECG data
registers when not all data needs to be read. The channels to read in this mode are selected in the CH_CNFG
register. In this mode, CSB must be asserted during 8*(1+N) clock cycles, where N is the number source bytes
enabled in CH_CNFG . The source for pace data is 2 bytes long; the source for ECG data is 3 bytes long, and
the source for data status is 1 byte long.
For example, to read the DATA_STATUS, DATA_CH3_PACE and DATA_CH3_ECG registers located at address
0x30, 0x35 and 0x3D and worth 6 bytes of data, follow the next steps:
1. Write a value of 0x49 to the CH_CNFG register (address 0x2F).
2. Read from the DATA_LOOP register (address 0x50).
3. Extend the CSB assertion for 56 clock cycles (8+8*6).
Copyright © 2013, Texas Instruments Incorporated 33
Product Folder Links: ADS1293