Datasheet
ADC124S051
SNAS260E –NOVEMBER 2004–REVISED NOVEMBER 2004
www.ti.com
USING THE ADC124S051
An ADC124S051 timing diagram and a serial interface timing diagram for the ADC124S051 are shown in the
Timing Diagrams section. CS is chip select, which initiates conversions and frames the serial data transfers.
SCLK (serial clock) controls both the conversion process and the timing of serial data. DOUT is the serial data
output pin, where a conversion result is sent as a serial data stream, MSB first. Data to be written to the
ADC124S051's Control Register is placed at DIN, the serial data input pin. New data is written to the ADC at DIN
with each conversion.
A serial frame is initiated on the falling edge of CS and ends on the rising edge of CS. Each frame must contain
an integer multiple of 16 rising SCLK edges. The ADC output data (DOUT) is in a high impedance state when
CS is high and is active when CS is low. Thus, CS acts as an output enable. Additionally, the device goes into a
power down state when CS is high, and also between continuous conversion cycles.
During the first 3 cycles of SCLK, the ADC is in the track mode, acquiring the input voltage. For the next 13
SCLK cycles the conversion is accomplished and the data is clocked out, MSB first, starting with the 5th clock. If
there is more than one conversion in a frame, the ADC will re-enter the track mode on the falling edge of SCLK
after the N*16th rising edge of SCLK, and re-enter the hold/convert mode on the N*16+4th falling edge of SCLK,
where "N" is an integer.
When CS is brought high, SCLK is internally gated off. If SCLK is stopped in the low state while CS is high, the
subsequent fall of CS will generate a falling edge of the internal version of SCLK, putting the ADC into the track
mode. This is seen by the ADC as the first falling edge of SCLK. If SCLK is stopped with SCLK high, the ADC
enters the track mode on the first falling edge of SCLK after the falling edge of CS.
During each conversion, data is clocked into the ADC at DIN on the first 8 rising edges of SCLK after the fall of
CS. For each conversion, it is necessary to clock in the data indicating the input that is selected for the
conversion after the current one. See Table 2, Table 3, and Table 4.
If CS and SCLK go low within the times defined by t
CSU
and t
CLH
, the rising edge of SCLK that begins clocking in
data at DIN may be one clock cycle later than expected. It is, therefore, best to strictly observe the minimum t
CSU
and t
CLH
times given in the Timing Specifications.
There are no power-up delays or dummy conversions required with the ADC124S051. The ADC is able to
sample and convert an input to full conversion immediately following power up. The first conversion result after
power-up will be that of IN1.
Table 2. Control Register Bits
Bit 7 (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DONTC DONTC ADD2 ADD1 ADD0 DONTC DONTC DONTC
Table 3. Control Register Bit Descriptions
Bit #: Symbol: Description
7 - 6, 2 - 0 DONTC Don't care. The value of these bits do not affect device operation.
5 ADD2
These three bits determine which input channel will be sampled and converted in the next
4 ADD1
track/hold cycle. The mapping between codes and channels is shown in Table 4.
3 ADD0
Table 4. Input Channel Selection
ADD2 ADD1 ADD0 Input Channel
x 0 0 IN1 (Default)
x 0 1 IN2
x 1 0 IN3
x 1 1 IN4
18 Submit Documentation Feedback Copyright © 2004, Texas Instruments Incorporated
Product Folder Links: ADC124S051