Datasheet

V
IN
D1
R1
C2
26 pF
V
A
D2
C1
4 pF
Conversion Phase - Switch Open
Track Phase - Switch Closed
ADC101S021
www.ti.com
SNAS307F JULY 2005REVISED MARCH 2013
Typical Application Circuit
A typical application of the ADC is shown in Figure 19. Power is provided in this example by the TI LP2950 low-
dropout voltage regulator, available in a variety of fixed and adjustable output voltages. The power supply pin is
bypassed with a capacitor network located close to the ADC. Because the reference for the ADC is the supply
voltage, any noise on the supply will degrade device noise performance. To keep noise off the supply, use a
dedicated linear regulator for this device, or provide sufficient decoupling from other circuitry to keep noise off the
ADC supply pin. Because of the ADC's low power requirements, it is also possible to use a precision reference
as a power supply to maximize performance. The three-wire interface is shown connected to a microprocessor or
DSP.
Figure 19. Typical Application Circuit
Analog Inputs
An equivalent circuit for the ADC's input is shown in Figure 20. Diodes D1 and D2 provide ESD protection for the
analog inputs. At no time should the analog input go beyond (V
A
+ 300 mV) or (GND 300 mV), as these ESD
diodes will begin conducting, which could result in erratic operation. For this reason, the ESD diodes should not
be used to clamp the input signal.
The capacitor C1 in Figure 20 has a typical value of 4 pF, and is mainly the package pin capacitance. Resistor
R1 is the on resistance of the track / hold switch, and is typically 500. Capacitor C2 is the ADC sampling
capacitor and is typically 26 pF. The ADC will deliver best performance when driven by a low-impedance source
to eliminate distortion caused by the charging of the sampling capacitance. This is especially important when
using the ADC to sample AC signals. Also important when sampling dynamic signals is an anti-aliasing filter
Figure 20. Equivalent Input Circuit
Digital Inputs and Outputs
The ADC digital inputs (SCLK and CS) are not limited by the same maximum ratings as the analog inputs. The
digital input pins are instead limited to +5.25V with respect to GND, regardless of V
A
, the supply voltage. This
allows the ADC to be interfaced with a wide range of logic levels, independent of the supply voltage.
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: ADC101S021