Datasheet

GND
SAMPLING
CAPACITOR
SW1
-
+
CONTROL
LOGIC
CHARGE
REDISTRIBUTION
DAC
SW2
V
IN
V
A
2
GND
SAMPLING
CAPACITOR
SW1
-
+
CONTROL
LOGIC
CHARGE
REDISTRIBUTION
DAC
SW2
V
IN
V
A
2
ADC101S021
www.ti.com
SNAS307F JULY 2005REVISED MARCH 2013
APPLICATIONS INFORMATION
ADC101S021 Operation
The ADC101S021 is a successive-approximation analog-to-digital converter designed around a charge-
redistribution digital-to-analog converter core. Simplified schematics of the ADC101S021 in both track and hold
modes are shown in Figure 16 and Figure 17, respectively. In Figure 16, the device is in track mode: switch SW1
connects the sampling capacitor to the input and SW2 balances the comparator inputs. The device is in this state
until CS is brought low, at which point the device moves to the hold mode.
Figure 17 shows the device in hold mode: switch SW1 connects the sampling capacitor to ground, maintaining
the sampled voltage, and switch SW2 unbalances the comparator. The control logic then instructs the charge-
redistribution DAC to add or subtract fixed amounts of charge from the sampling capacitor until the comparator is
balanced. When the comparator is balanced, the digital word supplied to the DAC is the digital representation of
the analog input voltage. The device moves from hold mode to track mode on the 13th rising edge of SCLK.
Figure 16. ADC101S021 in Track Mode
Figure 17. ADC101S021 in Hold Mode
Using the ADC101S021
The serial interface timing diagram for the ADC is shown in Figure 3. CS is chip select, which initiates
conversions on the ADC and frames the serial data transfers. SCLK (serial clock) controls both the conversion
process and the timing of serial data. SDATA is the serial data out pin, where a conversion result is found as a
serial data stream.
Basic operation of the ADC begins with CS going low, which initiates a conversion process and data transfer.
Subsequent rising and falling edges of SCLK will be labelled with reference to the falling edge of CS; for
example, "the third falling edge of SCLK" shall refer to the third falling edge of SCLK after CS goes low.
At the fall of CS, the SDATA pin comes out of TRI-STATE and the converter moves from track mode to hold
mode. The input signal is sampled and held for conversion on the falling edge of CS. The converter moves from
hold mode to track mode on the 13th rising edge of SCLK (see Figure 3). It is at this point that the interval for the
T
ACQ
specification begins. In the worst case, 350ns must pass between the 13th rising edge and the next falling
edge of SCLK. The SDATA pin will be placed back into TRI-STATE after the 16th falling edge of SCLK, or at the
rising edge of CS, whichever occurs first. After a conversion is completed, the quiet time (t
QUIET
) must be
satisfied before bringing CS low again to begin another conversion.
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: ADC101S021