Datasheet

ADC0816, ADC0817
SNAS527C JUNE 1999REVISED MARCH 2013
www.ti.com
Figure 4. Typical Error Curve
Timing Diagram
Figure 5.
The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any
SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3-bit
converter. In the ADC0816,ADC0817, the approximation technique is extended to 8 bits using the 256Rnetwork.
The A/D converter's successive approximation register (SAR)is reset on the positive edge of the start conversion
(SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process
will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by
tying the end-of-conversion(EOC) output to the SC input. If used in this mode, an external start conversion pulse
should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising
edge of start conversion.
The most important section of the A/D converter is the comparator. It is this section which is responsible for the
ultimate accuracy of the entire converter. It is also the comparator drift which has the greatest influence on the
repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all
the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through
a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier
since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter
extremely insensitive to temperature, long term drift and input offset errors.
Figure 4 shows a typical error curve for the ADC0816 as measured using the procedures outlined in AN-179.
8 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated
Product Folder Links: ADC0816 ADC0817