User's Manual

Table Of Contents
PRODUCTPREVIEW
30
CC2650MOD
SWRS187 AUGUST 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: CC2650MOD
Detailed Description Copyright © 2016, Texas Instruments Incorporated
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor
Controller independently of the main CPU, which means that the main CPU does not have to wake up, for
example, to execute an ADC sample or poll a digital sensor over SPI. The main CPU saves both current
and wake-up time that would otherwise be wasted. The Sensor Controller Studio enables the user to
configure the sensor controller and choose which peripherals are controlled and which conditions wake up
the main CPU.
6.9 Clock Systems
The CC2650MOD device supports two external and two internal clock sources.
A 24-MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to
create a 48-MHz clock.
The 32-kHz crystal is optional. Bluetooth low energy requires a slow-speed clock with better than
±500-ppm accuracy if the device is to enter any sleep mode while maintaining a connection. The internal
32-kHz RC oscillator can in some use cases be compensated to meet the requirements. The low-speed
crystal oscillator is designed for use with a 32-kHz watch-type crystal.
The internal high-speed oscillator (48 MHz) can be used as a clock source for the CPU subsystem.
The internal low-speed oscillator (32.768 kHz) can be used as a reference if the low-power crystal
oscillator is not used.
The 32-kHz clock source can be used as external clocking reference through GPIO.
6.10 General Peripherals and Modules
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals
to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a
programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five
GPIOs have high-drive capabilities (marked in bold in Section 4).
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and TI's
synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz.
The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baud-
rate generation up to a maximum of 3 Mbps .