Datasheet

Automated peak markers identify critical information at a glance. As shown here, the five
highest amplitude peaks that meet the threshold and excursion criteria are automatically
marked along with the peak's frequency and amplitude.
Spectrogram
The MDO3000 Series includes a spectrogram display which is ideal for
monitoring slowly changing RF phenomena. The x-axis represents
frequency, just like a typical spectrum display. However, the y-axis
represents time, and color is used to indicate amplitude.
Spectrogram slices are generated by taking each spectrum and "flipping it
up on its edge" so that it's one pixel row tall, and then assigning colors to
each pixel based on the amplitude at that frequency. Cold colors (blue,
green) are low amplitude and hotter colors (yellow, red) are higher
amplitude. Each new acquisition adds another slice at the bottom of the
spectrogram and the history moves up one row. When acquisitions are
stopped, you can scroll back through the spectrogram to look at any
individual spectrum slice.
Spectrogram display illustrates slowly moving RF phenomena. As shown here, a signal
that has multiple peaks is being monitored. As the peaks change in both frequency and
amplitude over time, the changes are easily seen in the Spectrogram display.
Ultra-wide capture bandwidth
Today's wireless communications vary significantly with time, using
sophisticated digital modulation schemes and, often, transmission
techniques that involve bursting the output. These modulation schemes can
have very wide bandwidth as well. Traditional swept or stepped spectrum
analyzers are ill equipped to view these types of signals as they are only
able to look at a small portion of the spectrum at any one time.
The amount of spectrum acquired in one acquisition is called the capture
bandwidth. Traditional spectrum analyzers sweep or step the capture
bandwidth through the desired span to build the requested image. As a
result, while the spectrum analyzer is acquiring one portion of the spectrum,
the event you care about may be happening in another portion of the
spectrum. Most spectrum analyzers on the market today have 10 MHz
capture bandwidths, sometimes with expensive options to extend that to
20, 40, or even 160 MHz in some cases.
In order to address the bandwidth requirements of modern RF, the
MDO3000 Series provides up to 3 GHz of capture bandwidth. The
spectrum is generated from a single acquisition, thus guaranteeing you'll
see the events you're looking for in the frequency domain.
Spectral display of a bursted communication both into a device through Zigbee at
900 MHz and out of the device through Bluetooth at 2.4 GHz, captured with a single
acquisition.
Spectrum traces
The MDO3000 Series spectrum analyzer offers four different traces or
views including Normal, Average, Max Hold, and Min Hold.
Datasheet
8 www.tektronix.com