Integration Manual
Table Of Contents
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in 2G connected mode
- 1.5.1.3 VCC current consumption in 3G connected mode
- 1.5.1.4 VCC current consumption in LTE connected mode
- 1.5.1.5 VCC current consumption in cyclic low power idle mode / active mode
- 1.5.1.6 VCC current consumption in fixed active mode
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interfaces
- 1.9 Data communication interfaces
- 1.10 eMMC interface
- 1.11 Digital Audio interfaces
- 1.12 ADC interfaces
- 1.13 General Purpose Input/Output
- 1.14 Reserved pins (RSVD)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Jamming detection
- 1.15.3 IP modes of operation
- 1.15.4 Dual stack IPv4 and IPv6
- 1.15.5 Embedded TCP/IP and UDP/IP
- 1.15.6 Embedded FTP and FTPS
- 1.15.7 Embedded HTTP and HTTPS
- 1.15.8 SSL and TLS
- 1.15.9 Firmware update Over AT (FOAT)
- 1.15.10 Firmware update Over The Air (FOTA)
- 1.15.11 Power Saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a LDO linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for the external battery charging circuit
- 2.2.1.8 Guidelines for external charging and power path management circuit
- 2.2.1.9 Guidelines for removing VCC supply
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interfaces
- 2.6 Data communication interfaces
- 2.7 eMMC interface
- 2.8 Digital Audio interface
- 2.9 ADC interfaces
- 2.10 General Purpose Input/Output
- 2.11 Reserved pins (RSVD)
- 2.12 Module placement
- 2.13 Module footprint and paste mask
- 2.14 Thermal guidelines
- 2.15 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- 6 FCC Notes
- Appendix
- Glossary
- Related documents
- Revision history
- Contact
TOBY-L3 series - System Integration Manual
TSD-19090601 - R13 System Integration Manual Page 28 of 143
Figure 6 reports the current consumption profiles in GPRS class 12 connected mode, in the 850 or 900 MHz
bands, with 4 slots used to transmit and 1 slot used to receive.
It must be noted that the actual current consumption of the module in 2G connected mode depends also
on the specific concurrent activities performed by the integrated CPU, beside the actual Tx power and
antenna load.
Time
[ms]
RX
slot
unused
slot
TX
slot
TX
slot
TX
slot
TX
slot
MON
slot
unused
slot
RX
slot
unused
slot
TX
slot
TX
slot
TX
slot
TX
slot
MON
slot
unused
slot
GSM frame
4.615 ms
(1 fram e = 8 slot s)
Current [A]
200mA
60-130mA
Peak current depends
on TX power and act ual
ant enna load
GSM frame
4.615 ms
(1 frame = 8 slots)
1600 mA
0.0
1.5
1.0
0.5
2.0
2.5
Figure 6: VCC current consumption profile during a 2G GPRS/EDGE multi-slot connection (4 TX slots, 1 RX slot)
For EDGE connections, the VCC current consumption profile is very similar to the GPRS current profile, so
the image shown in Figure 6, representing the current consumption profile in GPRS class 12 connected
mode, is valid for the EDGE class 12 connected mode as well.
1.5.1.3 VCC current consumption in 3G connected mode
During a 3G connection, the module can transmit and receive continuously due to the Frequency Division
Duplex (FDD) mode of operation with the Wideband Code Division Multiple Access (WCDMA).
The current consumption depends on output RF power, which is always regulated by the network (the
current base station) sending power control commands to the module. These power control commands are
logically divided into a slot of 666 µs, so the rate of power change can reach a maximum rate of 1.5 kHz.
There are no high current peaks as in the 2G connection, since transmission and reception are continuously
enabled due to FDD WCDMA implemented in the 3G that differs from the TDMA implemented in the 2G
case.
In the worst case scenario, corresponding to a continuous transmission and reception at maximum output
power (approximately 250 mW or 24 dBm), the average current drawn by the module at the VCC pins is
considerable. At the lowest output RF power (approximately 0.01 µW or –50 dBm), the current drawn by
the internal power amplifier is strongly reduced. The total current drawn by the module at the VCC pins is
due to baseband processing and transceiver activity.
Figure 7 shows an example of the current consumption profile of the module in 3G WCDMA/DC-HSPA+
continuous transmission mode.