DRAFT 1 5 Installation This chapter provides information on the site requirements for your TB9300 equipment and also describes how to install the base station in a standard 19 inch rack or cabinet. If this is your first time installing a TB9300 base station, we recommend that you read the entire chapter before beginning the actual installation.
DRAFT 1 5.1 Before You Begin 5.1.1 Equipment Security The security of your base station equipment is a high priority. If the site is not fully secure, the base station should at least be locked in a secure cabinet to prevent unauthorized access. 5.1.2 Grounding and Lightning Protection Electrical Ground The base station modules are grounded by physical contact between the module case and the subrack.
DRAFT 1 5.1.5 Cabinet and Rack Ventilation The cooling airflow for the base station enters through the front panel and exits at the rear of the subrack. For optimum thermal performance, the heated air that has passed through a base station must not be allowed to reenter the air intakes on the front panel. Any space at the front of the cabinet not occupied by equipment should be covered by a blanking panel. Refer to Figure 5.1 on page 66.
DRAFT 1 Figure 5.1 Typical cabinet ventilation requirements top view b 8in (20cm) side view front view 2U c e d ≥7in (≥17.
DRAFT 1 5.2 Unpacking and Moving the Subrack The subrack is packed in a strong corrugated cardboard carton with top and bottom foam cushions. To prevent personal injury and damage to the equipment, we recommend that two people unpack and move the subrack. To remove the subrack from the carton, follow the procedure illustrated in Figure 5.2. Caution A subrack complete with modules can weigh up to 62lb (28kg), or up to 66lb (30kg) complete with packaging.
DRAFT 1 Disposal of Packaging 68 Installation 3. Slide the carton upwards over the foam cushions and lift it away e. Remove the cushion from the bottom of the subrack f. 4. Rotate the subrack and cushion carefully over the rear of the subrack g so that it is the right way up with the cushion on top h. Remove the cushion from the top of the subrack i. If you do not need to keep the packaging, we recommend that you recycle it according to your local recycling methods.
DRAFT 1 5.3 Identifying the Equipment You can identify the model and hardware configuration of the TB9300 modules by referring to the product code printed on labels at the rear of each module. The meaning of each character in the product code is explained in the tables below. This explanation of product codes is not intended to suggest that any combination of features is necessarily available in any one product.
DRAFT 1 PMU Product Codes 70 Installation Product Code Description TBAXXXX-XXXX 3 = PMU TBA3XXX-XXXX 0 = default TBA3XXX-XXXX 0 = AC module not fitted A = AC module fitted TBA3XXX-XXXX 0 = DC module not fitted 1 = 12V DC module fitted 2 = 24V DC module fitted 4 = 48V DC module fitted TBA3XXX-XXXX 0 = standby power supply card not fitted 1 = 12VDC standby power supply card fitted 2 = 24VDC standby power supply card fitted 4 = 48VDC standby power supply card fitted TBA3XXX-XXXX 0 = auxiliary p
DRAFT 1 5.4 Initial Setting Up Before putting the base station into service, you may want to carry out some basic functional testing, configuration, and tuning (if required). This section provides an overview of these procedures: 5.4.
DRAFT 1 Functional Tests Test The following table provides an overview of the tests available using the web interface. Refer to the Help for full details of these tests.
DRAFT 1 5.4.2 Customizing the Configuration The following steps provide an overview of the process used to configure the base station with the settings it needs. Refer to the Help for detailed information. 1. Log in to the base station (refer to “Connecting Your PC to the Base Station” on page 48 for more details). 2. Select Configure. The base station has many different settings that can be configured before it is put into operation, such as: 3.
DRAFT 1 5.4.4 Changing the Root Password The root password to the Linux operating system of the reciter is a possible security risk. The equipment is delivered with a default password that is well known. Knowledge of the password could be used to render the equipment inoperable, for example by deleting files. If you are concerned about the security risk that this poses, change the password. If Tait provides support services, it may need to know the password.
DRAFT 1 5.4.5 Tuning the Reciter B3-Band Reciter Before the base station is installed on site, you may need to tune the receiver front end. The receiver front end requires tuning if the receive frequency is shifted more than 2MHz away from the previously set frequency, or the RSSI level of the new frequency is more than 1dB lower than the RSSI level of the previously set frequency. The receiver in the B3-band VHF reciter covers the 148 to 174MHz frequency band.
DRAFT 1 5. Change the RF input signal to the new receive frequency at –80dBm. Check that the RSSI reading is –80dBm ±1dB. If it is, the receiver front end does not require tuning. If it is not, go to the next step. 6. Using the Johanson tuning tool1, adjust the correct helical filter for the new frequency (as shown in Figure 5.3) to obtain a peak RSSI reading. This reading should be within 1dB of the reading at the previous frequency.
DRAFT 1 5.5 Installing the Base Station on Site 5.5.1 Base Stations for Trunked Systems When installing base stations that are part of a trunked system, it is very important to observe good site engineering rules. This is especially true when the channels are combined into a single antenna.
DRAFT 1 5.5.3 Mounting the Subrack Caution A subrack complete with modules can weigh up to 62lb (28kg), or up to 66lb (30kg) complete with packaging. We recommend that you have another person help you unpack and move the equipment. The TBAA03-16 carrying handles will make it easier to move the equipment once it has been unpacked. If necessary, remove the modules from the subrack before moving it (refer to “Replacing Modules” on page 95). In all cases follow safe lifting practices. Figure 5.
DRAFT 1 Figure 5.5 below gives the dimensions of the subrack and its mounting holes. Figure 5.5 Subrack dimensions 17 in (432 mm) 14.8 in (375.5 mm) 19 in (482.6 mm) 14.7 in (373.5 mm) 18.3 in (465.1 mm) 14.37 in (365 mm) 4 in 6.96 in (176.8 mm) (101.6 mm) 5.25 in (133.4 mm) 0.42 in (10.6 mm) 0.26 in (6.
DRAFT 1 Auxiliary Support Bracket TBAA03-13 auxiliary support brackets can be fitted to the rear of the subrack to provide additional mounting security. Figure 5.6 shows a standard TBAA03-13 bracket b fitted in a typical Tait cabinet c. If you are not using the Tait cabinet, you may have to make your own brackets to suit your installation. Figure 5.
DRAFT 1 DC Power Cabling DC power cables should be well supported so that the terminals on the PMU and on the ends of the cables do not have to support the full weight of the cables. Figure 5.7 shows two recommended methods of securing these cables to prevent straining either set of terminals. We recommend that you fit the supplied covers to the DC terminals to protect against accidental shorts. Figure 5.
DRAFT 1 5.6 Connecting Up the Base Station This section provides information relevant to the task of connecting up the various inputs and outputs of the base station. 5.6.1 Connection Overview The connections at the rear of a dual 50W base station are identified in Figure 5.8. External connections are all located at the rear of the subrack. Figure 5.
DRAFT 1 5.6.2 Connecting AC Power The PMU is designed to accept a mains input of 88 to 264VAC at 45 to 65Hz. A standard 3-wire grounded socket outlet must be used to supply the AC power. The socket outlet must be installed near the equipment and must be easily accessible. This outlet should be connected to an AC power supply capable of providing at least 600W. The requirements of two typical AC supplies are given in the following table.
DRAFT 1 5.6.3 Connecting DC Power The PMU is designed to accept a nominal 12VDC, 24VDC or 48VDC input (depending on the model) with negative or positive ground. There is a minimum DC startup threshold to prevent damaging a battery which has little capacity left. You must connect the DC supply from the battery to the PMU via a fuse or DC-rated circuit breaker with a contact separation of 3mm, and with the appropriate rating, as shown in the table below.
DRAFT 1 5.6.4 Connecting the Auxiliary DC Power Output The PMU can provide an auxiliary DC output from the auxiliary power supply board. This board is available with an output of 13.65VDC, 27.3VDC, or 54.6VDC (depending on the model), and is current limited to 3A, 1.5A or 750mA respectively. This power supply is permanently on as soon as the base station has finished powering up, and is available on the auxiliary output connector on the rear panel.
DRAFT 1 5.6.5 Connecting RF Notice Do not remove the load from the PA while it is transmitting as this may damage the PA output stage. The RF input to the base station is via the marked BNC connector on the rear panel of the reciter. The RF output is via the N-type connector on the rear panel of the PA (refer to Figure 5.8 on page 82). Cables and antennas should be of high quality construction.
DRAFT 1 5.6.6 Connecting an External Frequency Reference An external reference frequency is not normally required for B3 band. However, an external reference can be used when you need to maximize the range of the base station. For K4 Band, the internal frequency reference accuracy is inadequate, and an external reference must be used. The external reference frequency can be 10MHz or 12.8MHz, with an input level of 300mVpp to 5V pp. The stability of this reference should be better than 50 parts per billion.
DRAFT 1 5.6.7 Ethernet Connection The RJ-45 socket on the reciter’s rear panel provides the 10BASE-T or 100BASE-T Ethernet connection to the other devices in the network. Use Cat-5 cable to connect this socket to the Tait DMR Network via a router or switch. If necessary, refer to “Ethernet Connector” on page 109 for a list of Ethernet connection pin allocations.
DRAFT 1 5.6.8 Connecting General Purpose Inputs and Outputs The base station has a number of general purpose inputs and outputs. These are connected via the 25-way D-range on the rear panel. The pin allocations for the D-range connector are given in the following table. Not all pins are used in this release of the base station.
DRAFT 1 90 Installation TB9300 Installation and Operation Manual © Tait Limited May 2013