TS4990 1.2 W audio power amplifier with active-low standby mode Features TS4990IJT/TS4990EIJT - Flip-chip 9 bumps ■ Operating range from VCC = 2.2 V to 5.5 V ■ 1.2 W output power at VCC = 5 V, THD = 1%, F = 1 kHz, with 8 Ω load ■ Ultra-low consumption in standby mode (10 nA) ■ 62 dB PSRR at 217 Hz in grounded mode ■ Near-zero pop and click ■ Ultra-low distortion (0.
Contents TS4990 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 4.1 BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . .
TS4990 Absolute maximum ratings and operating conditions 1 Absolute maximum ratings and operating conditions Table 1.
Typical application schematics 2 TS4990 Typical application schematics Figure 1. Typical application schematics Rfeed Vcc + Cfeed VCC Cs Cin Audio In Rin Vin- Vout 1 Vin+ Speaker 8 Ohms + Vout 2 AV = -1 Bypass Standby Control Table 3. TS4990 Component descriptions Component Functional description Rin Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)).
TS4990 3 Electrical characteristics Electrical characteristics Table 4. Symbol Electrical characteristics when VCC = +5 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Typ. Max. Unit Supply current No input signal, no load 3.
Electrical characteristics Table 5. Symbol TS4990 Electrical characteristics when VCC = +3.3 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Typ. Max. Unit Supply current No input signal, no load 3.3 6 mA Standby current (1) No input signal, VSTBY = GND, RL = 8 Ω 10 1000 nA Voo Output offset voltage No input signal, RL = 8 Ω 1 10 mV Pout Output power THD = 1% max, F = 1 kHz, RL = 8 Ω ICC ISTBY Parameter Min.
TS4990 Electrical characteristics Table 6. Symbol Electrical characteristics when VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Typ. Max. Unit Supply current No input signal, no load 3.1 6 mA Standby current (1) No input signal, VSTBY = GND, RL = 8 Ω 10 1000 nA Voo Output offset voltage No input signal, RL = 8 Ω 1 10 mV Pout Output power THD = 1% max, F = 1 kHz, RL = 8 Ω ICC ISTBY Parameter Min.
Electrical characteristics Open loop frequency response 0 60 40 -120 -40 20 Gain (dB) 0 Phase (°) Phase -80 -20 -40 0 Gain -40 20 Open loop frequency response 60 Gain 40 Gain (dB) Figure 3. Phase -80 0 Phase (°) Figure 2. TS4990 -120 -20 Vcc = 5V RL = 8Ω Tamb = 25°C -60 0.1 1 -160 10 100 1000 -40 -200 10000 -60 0.1 1 10 Frequency (kHz) Figure 4. -160 Vcc = 3.3V RL = 8Ω Tamb = 25°C 100 1000 -200 10000 Frequency (kHz) Open loop frequency response Figure 5.
TS4990 Figure 8. Electrical characteristics PSRR vs. power supply Figure 9. 0 PSRR (dB) -20 -30 0 Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C -40 -10 Vcc : 2.2V 2.6V 3.3V 5V PSRR (dB) -10 PSRR vs. power supply -50 -20 Vripple = 200mVpp Av = 10 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V -30 -40 -60 -50 -70 100 1000 10000 Frequency (Hz) 100000 Figure 10. PSRR vs.
Electrical characteristics TS4990 Figure 14. PSRR vs. DC output voltage Figure 15. PSRR vs. DC output voltage 0 0 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C PSRR (dB) -20 -30 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -10 PSRR (dB) -10 -40 -20 -30 -50 -40 -60 -70 -5 -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 -50 -5 5 Figure 16. PSRR vs. DC output voltage -20 -30 -40 -40 -50 -50 -60 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.
TS4990 Electrical characteristics Figure 20. PSRR vs. DC output voltage Figure 21. PSRR vs. DC output voltage 0 0 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C PSRR (dB) -20 -30 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -10 PSRR (dB) -10 -40 -20 -30 -50 -40 -60 -70 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -50 -2.5 -2.0 -1.5 -1.0 -0.5 2.5 Differential DC Output Voltage (V) Figure 22. Output power vs. power supply voltage 0.5 1.0 1.5 2.
Electrical characteristics TS4990 Figure 26. Output power vs. power supply voltage Figure 27. Output power vs. load resistor 2.2 RL = 16Ω F = 1kHz 1.0 BW < 125kHz Tamb = 25°C 0.8 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 2.0 1.8 Output power (W) Output power (W) 1.2 THD+N=10% 0.6 0.4 THD+N=1% 1.6 1.4 THD+N=10% 1.2 1.0 0.8 0.6 THD+N=1% 0.4 0.2 0.2 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 0.0 5.5 Figure 28. Output power vs.
TS4990 Electrical characteristics Figure 33. Power derating curves Flip-Chip Package Power Dissipation (W) Figure 32. Power dissipation vs. Pout 0.6 Power Dissipation (W) Vcc=3.3V F=1kHz 0.5 THD+N<1% RL=4Ω 0.4 0.3 0.2 RL=8Ω 0.1 RL=16Ω 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 1.2 2 Heat sink surface ≈ 100mm (See demoboard) 1.0 0.8 0.6 0.4 0.2 0.0 0.7 No Heat sink 0 25 50 Figure 34. Clipping voltage vs. power supply voltage and load resistor RL = 4Ω Vcc=2.6V F=1kHz THD+N<1% 0.35 0.5 0.
Electrical characteristics TS4990 Figure 38. Current consumption vs. standby voltage @ VCC = 5V Figure 39. Current consumption vs. standby voltage @ VCC = 2.6V 4.0 4.0 3.0 2.5 2.0 1.5 1.0 Vcc = 5V No load Tamb=25°C 0.5 0.0 0 1 2 3 4 Current Consumption (mA) Current Consumption (mA) 3.5 Vcc = 2.6V 3.5 No load Tamb=25°C 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 5 0.5 Standby Voltage (V) Figure 40. THD + N vs. output power 1.5 2.0 2.5 Figure 41. Current consumption vs. standby voltage @ VCC = 3.
TS4990 Electrical characteristics Figure 44. THD + N vs. output power Figure 45. THD + N vs. output power 10 10 Vcc=2.2V Vcc=2.6V 0.1 Vcc=2.2V Vcc=2.6V 0.1 Vcc=3.3V 0.01 1E-3 Vcc=5V Vcc=3.3V 0.01 0.1 Output Power (W) 1 Figure 46. THD + N vs. output power 0.01 1E-3 Vcc=5V 0.01 0.1 Output Power (W) 1 Figure 47. THD + N vs. output power 10 10 RL = 4Ω F = 20kHz Av = 2 Cb = 1μF BW < 125kHz Tamb = 25°C Vcc=2.
Electrical characteristics TS4990 Figure 50. THD + N vs. output power Figure 51. THD + N vs. frequency RL = 16Ω F = 20kHz Av = 2 Cb = 1μF 1 BW < 125kHz Tamb = 25°C RL=8Ω Av=2 Cb = 1μF Bw < 125kHz Tamb = 25°C Vcc=2.2V THD + N (%) THD + N (%) 10 Vcc=2.6V 0.1 Vcc=5V, Po=1W 0.1 Vcc=2.2V, Po=130mW Vcc=3.3V Vcc=5V 0.01 0.01 1E-3 0.01 0.1 Output Power (W) 1 Figure 52. SNR vs. power supply with unweighted filter (20Hz to 20kHz) 20 10000 20k 1000 Frequency (Hz) Figure 53. THD + N vs.
TS4990 Electrical characteristics Figure 56. Signal to noise ratio vs. power supply with a weighted filter Figure 57. Output noise voltage device ON 110 45 Output Noise Voltage ( Vrms) Signal to Noise Ratio (dB) RL=16Ω 105 100 RL=8Ω RL=4Ω 95 90 Av = 2 85 Cb = 1μF THD+N < 0.7% Tamb = 25°C 80 2.5 3.0 3.5 4.0 4.5 35 Unweighted Filter 30 25 20 A Weighted Filter 15 10 5.0 Vcc=2.2V to 5.5V Cb=1μF RL=8Ω Tamb=25°C 40 2 4 6 Closed Loop Gain Power Supply Voltage (V) Figure 58.
Application information TS4990 4 Application information 4.1 BTL configuration principle The TS4990 is a monolithic power amplifier with a BTL output type. BTL (bridge tied load) means that each end of the load is connected to two single-ended output amplifiers.
TS4990 Application information The graph in Figure 60 shows an example of Cin and Cfeed influence. Figure 60. Frequency response gain vs. Cin and Cfeed 10 5 Gain (dB) 0 Cfeed = 330pF Cfeed = 680pF -5 -15 Cin = 22nF -20 Rin = Rfeed = 22kΩ Tamb = 25°C Cin = 82nF -25 10 4.4 Cfeed = 2.2nF Cin = 470nF -10 100 1000 Frequency (Hz) 10000 Power dissipation and efficiency Hypotheses: ● Load voltage and current are sinusoidal (Vout and Iout). ● Supply voltage is a pure DC source (VCC).
Application information TS4990 Therefore, the power dissipated by each amplifier is: Pdiss = Psupply - Pout (W) 2 2V CC P diss = ---------------------- P out – P out π RL and the maximum value is obtained when: δP diss ------------------ = 0 δP out and its value is: 2 P diss Note: max 2V CC = -------------2 π RL (W) This maximum value is only dependent on power supply voltage and load values.
TS4990 4.6 Application information Wake-up time (tWU) When the standby is released to put the device ON, the bypass capacitor Cb is not charged immediately. Because Cb is directly linked to the bias of the amplifier, the bias will not work properly until the Cb voltage is correct. The time to reach this voltage is called wake-up time or tWU and specified in the electrical characteristics tables with Cb = 1 µF.
Application information TS4990 mode, the bypass pin and Vin pin are short-circuited to ground by internal switches. This allows a quick discharge of Cb and Cin capacitors. 4.8 Pop performance Pop performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor Cb. The size of Cin is dependent on the lower cut-off frequency and PSRR values requested. The size of Cb is dependent on THD+N and PSRR values requested at lower frequencies.
TS4990 4.9 Application information Application example: differential input, BTL power amplifier The schematics in Figure 64 show how to configure the TS4990 to work in differential input mode. The gain of the amplifier is: R2 G VDIFF = 2 ------R1 In order to reach the best performance of the differential function, R1 and R2 should be matched at 1% max. Figure 64. Differential input amplifier configuration R2 + Vcc Cin VCC Cs R1 Vin- Neg. Input Vout 1 Cin Vin+ R1 Speaker 8 Ohms + Pos.
Application information TS4990 Example bill of materials The bill of materials in Table 7 is for the example of a differential amplifier with a gain of 2 and a -3 dB lower cut-off frequency of about 80 Hz. Table 7.
TS4990 5 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.1 Flip-chip package information Figure 65.
Package information TS4990 Figure 67. Package mechanical data for 9-bump flip-chip package 1.60 mm 1.60 mm 0.5mm 0.5mm ∅ 0.25mm ■ Die size: 1.60 x 1.60 mm ±30µm ■ Die height (including bumps): 600µm ■ Bump diameter: 315µm ±50µm ■ Bump diameter before reflow: 300µm ±10µm ■ Bump height: 250µm ±40µm ■ Die height: 350µm ±20µm ■ Pitch: 500µm ±50µm ■ Coplanarity: 50µm max ■ * Back coating height: 100µm ±10µm * Optional 100µm 600µm Figure 68. Daisy chain mechanical data 1.6mm 3 1.
TS4990 Package information Figure 69. TS4990 footprint recommendations 75µm min. 100μm max. 500μm 500μm Track Φ=400μm typ. 150μm min. Φ=340μm min. 500μm 500μm Φ=250μm Non Solder mask opening Pad in Cu 18μm with Flash NiAu (2-6μm, 0.2μm max.) Figure 70. Tape and reel specification (top view) 1.
Package information 5.2 TS4990 MiniSO-8 package information Figure 71. MiniSO-8 package mechanical drawing Table 8. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.
TS4990 Package information 5.3 DFN8 package information Note: DFN8 exposed pad (E2 x D2) is connected to pin number 7. For enhanced thermal performance, the exposed pad must be soldered to a copper area on the PCB, acting as a heatsink. This copper area can be electrically connected to pin7 or left floating. Figure 72. DFN8 3x3x0.90mm package mechanical drawing (pitch 0.5mm) ddd C SEATING PLANE A3 A A1 A2 C D 0.15x45° e 2 3 4 L E E2 1 8 7 6 5 b D2 BOTTOM VIEW Table 9.
Package information 5.4 TS4990 SO-8 package information Figure 73. SO-8 package mechanical drawing Table 10. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 H 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.
TS4990 6 Ordering information Ordering information Table 11. Order codes Order code Temperature range Package Packing Marking TS4990IJT TS4990EIJT(1) Flip-chip, 9 bumps Tape & reel 90 TSDC05IJT TSDC05EIJT(2) Flip-chip, 9 bumps Tape & reel DC3 MiniSO-8 Tape & reel K990 DFN8 Tape & reel K990 FC + back coating Tape & reel 90 SO-8 Tube or Tape & reel TS4990I TS4990IST -40°C, +85°C TS4990IQT TS4990EKIJT TS4990ID TS4990IDT 1. Lead-free Flip-chip part number 2.
Revision history 7 TS4990 Revision history Table 12. Document revision history Date Revision 1-Jul-2002 1 First release. 4-Sep-2003 2 Update mechanical data. 1-Oct-2004 3 Order code for back coating on flip-chip. 2-Apr-2005 4 Typography error on page 1: Mini-SO-8 pin connection. May-2005 5 New marking for assembly code plant. 1-Jul-2005 6 Error on Table 4 on page 5. Parameters in wrong column.
TS4990 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale.