STM32F103xC STM32F103xD STM32F103xE High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces Features FBGA ■ Core: ARM 32-bit Cortex™-M3 CPU – 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access – Single-cycle multiplication and hardware division ■ Memories – 256 to 512 Kbytes of Flash memory – up to 64 Kbytes of SRAM – Flexible static memory controller with 4 Chip Select.
Contents STM32F103xC, STM32F103xD, STM32F103xE Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2/130 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.
STM32F103xC, STM32F103xD, STM32F103xE Contents 2.3.29 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.30 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Electrical characteristics . . . . . . . . . . . .
Contents 6 STM32F103xC, STM32F103xD, STM32F103xE 5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2 Thermal characteristics . . . . . . . . . .
STM32F103xC, STM32F103xD, STM32F103xE List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44.
List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. 6/130 STM32F103xC, STM32F103xD, STM32F103xE I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STM32F103xC, STM32F103xD, STM32F103xE List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38.
List of figures Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. 8/130 STM32F103xC, STM32F103xD, STM32F103xE NAND controller waveforms for write access . . . . . . . . . . .
STM32F103xC, STM32F103xD, STM32F103xE 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xC, STM32F103xD and STM32F103xE high-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family, please refer to Section 2.2: Full compatibility throughout the family. The high-density STM32F103xx datasheet should be read in conjunction with the STM32F10xxx reference manual.
Description 2 STM32F103xC, STM32F103xD, STM32F103xE Description The STM32F103xC, STM32F103xD and STM32F103xE performance line family incorporates the high-performance ARM® Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.
STM32F103xC, STM32F103xD, STM32F103xE 2.1 Description Device overview The STM32F103xx high-density performance line family offers devices in six different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. Figure 1 shows the general block diagram of the device family. Table 2.
Description STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram Ibus Cortex-M3 CPU Fmax: 48/72 MHz NVIC GP DMA2 FSMC PLL Reset & Clock control AHB2 APB2 GPIO port C PD[15:0] GPIO port D PE[15:0] GPIO port E PF[15:0] GPIO port F PG[15:0] GPIO port G TIM1 VREF– VREF+ @VDD XTAL OSC 4-16 MHz RTC Backup reg AWU Backup interface AHB2 APB1 VSS NRST VDDA VSSA OSC_IN OSC_OUT VBAT =1.8 V to 3.
STM32F103xC, STM32F103xD, STM32F103xE Figure 2. Description Clock tree FLITFCLK to Flash programming interface USB Prescaler /1, 1.5 USBCLK to USB interface 48 MHz I2S3CLK Peripheral clock enable 8 MHz HSI RC I2S2CLK to I2S2 Peripheral clock enable Peripheral clock enable HSI SDIOCLK FSMCCLK Peripheral clock enable 72 MHz max /2 PLLSRC to I2S3 /8 SW PLLMUL HSI ..., x16 x2, x3, x4 PLL SYSCLK AHB Prescaler 72 MHz /1, 2..
Description 2.2 STM32F103xC, STM32F103xD, STM32F103xE Full compatibility throughout the family The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.
STM32F103xC, STM32F103xD, STM32F103xE 2.3 Overview 2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM Description The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
Description 2.3.6 STM32F103xC, STM32F103xD, STM32F103xE LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration. 2.3.
STM32F103xC, STM32F103xD, STM32F103xE 2.3.10 Description Boot modes At startup, boot pins are used to select one of three boot options: ● Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes. ● Boot from system memory ● Boot from embedded SRAM The boot loader is located in system memory.
Description 2.3.14 STM32F103xC, STM32F103xD, STM32F103xE Low-power modes The STM32F103xC, STM32F103xD and STM32F103xE performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
STM32F103xC, STM32F103xD, STM32F103xE Description periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.
Description STM32F103xC, STM32F103xD, STM32F103xE General-purpose timers (TIMx) There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output.
STM32F103xC, STM32F103xD, STM32F103xE 2.3.19 Description Universal synchronous/asynchronous receiver transmitters (USARTs) The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
Description 2.3.24 STM32F103xC, STM32F103xD, STM32F103xE Universal serial bus (USB) The STM32F103xC, STM32F103xD and STM32F103xE performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). 2.3.
STM32F103xC, STM32F103xD, STM32F103xE Description This dual digital Interface supports the following features: ● two DAC converters: one for each output channel ● 8-bit or 12-bit monotonic output ● left or right data alignment in 12-bit mode ● synchronized update capability ● noise-wave generation ● triangular-wave generation ● dual DAC channel independent or simultaneous conversions ● DMA capability for each channel ● external triggers for conversion ● input voltage reference VREF+ Ei
Pinouts and pin descriptions STM32F103xC, STM32F103xD, STM32F103xE 3 Pinouts and pin descriptions Figure 3.
STM32F103xC, STM32F103xD, STM32F103xE Figure 4.
Pinouts and pin descriptions STM32F103xC and STM32F103xE performance line LQFP144 pinout 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD_11 VSS_11 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD_10 VSS_10 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 5.
STM32F103xC, STM32F103xD, STM32F103xE STM32F103xC and STM32F103xE performance line LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 6.
Pinouts and pin descriptions STM32F103xC and STM32F103xE performance line LQFP64 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 7.
STM32F103xC, STM32F103xD, STM32F103xE Figure 8.
Pinouts and pin descriptions High-density STM32F103xx pin definitions Alternate functions(4) WLCSP64 LQFP64 LQFP100 LQFP144 Default LFBGA100 Main function(3) (after reset) LFBGA144 Type(1) Pins I / O Level(2) Table 5.
STM32F103xC, STM32F103xD, STM32F103xE High-density STM32F103xx pin definitions (continued) - - 20 31 VREF- S VREF- - 21 32 VREF+ S VREF+ M1 K1 G8 13 22 33 VDDA S VDDA K1 H1 L1 J2 J1 F7 (7) LQFP144 LQFP100 Main function(3) (after reset) LQFP64 Type(1) Alternate functions(4) WLCSP64 LFBGA100 LFBGA144 Pins I / O Level(2) Table 5.
Pinouts and pin descriptions High-density STM32F103xx pin definitions (continued) Alternate functions(4) LFBGA100 WLCSP64 LQFP64 LQFP100 LQFP144 Main function(3) (after reset) LFBGA144 Type(1) Pins I / O Level(2) Table 5.
STM32F103xC, STM32F103xD, STM32F103xE High-density STM32F103xx pin definitions (continued) Alternate functions(4) LQFP100 J9 H9 - - 57 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK H9 G9 - - 58 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS L10 K10 - - 59 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1 / USART3_RTS K10 J10 - - 60 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 G8 - - - - 83 VSS_8 S VSS_8 F8 - - - - 84 VDD_8 S VDD_8 K11 H10 - - 61 85 PD14 I/O FT PD14 FSMC_D0 T
Pinouts and pin descriptions High-density STM32F103xx pin definitions (continued) A12 A10 D4 46 72 105 C11 F8 - - Pin name PA13 Type(1) LQFP144 LQFP100 LQFP64 WLCSP64 LFBGA100 LFBGA144 Pins I / O Level(2) Table 5.
STM32F103xC, STM32F103xD, STM32F103xE High-density STM32F103xx pin definitions (continued) Alternate functions(4) Default Remap I/O FT JTDO SPI3_SCK / I2S3_CK/ PB3/TRACESWO TIM2_CH2 / SPI1_SCK A6 A6 B4 56 90 134 PB4 I/O FT NJTRST SPI3_MISO PB4 / TIM3_CH1 SPI1_MISO B6 C5 A5 57 91 135 PB5 I/O PB5 I2C1_SMBA/ SPI3_MOSI I2S3_SD TIM3_CH2 / SPI1_MOSI C6 B5 B5 58 92 136 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(8) USART1_TX LQFP144 PB3 LQFP100 A7 A4 55 89 133 LQFP64 A7 WLCSP64 LFBGA100
Pinouts and pin descriptions Table 6.
STM32F103xC, STM32F103xD, STM32F103xE Table 6.
Memory mapping 4 STM32F103xC, STM32F103xD, STM32F103xE Memory mapping The memory map is shown in Figure 9. Figure 9.
STM32F103xC, STM32F103xD, STM32F103xE 5 Electrical characteristics 5.1 Parameter conditions Electrical characteristics Unless otherwise specified, all voltages are referenced to VSS. 5.1.
Electrical characteristics 5.1.6 STM32F103xC, STM32F103xD, STM32F103xE Power supply scheme Figure 12. Power supply scheme 6"!4 "ACKUP CIRCUITRY /3# + 24# 7AKE UP LOGIC "ACKUP REGISTERS /54 '0 ) /S ). ,EVEL SHIFTER 0O WER SWI TCH 6 )/ ,OGIC +ERNEL LOGIC #05 $IGITAL -EMORIES 6$$ 6$$ 2EGULATOR § N& § & 633 6$$ 6$$! 62%& N& & N& & 62%& 62%& !$# $!# !NALOG 2#S 0,, 633! AI Caution: In Figure 12, the 4.
STM32F103xC, STM32F103xD, STM32F103xE 5.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics, Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7.
Electrical characteristics Table 9. STM32F103xC, STM32F103xD, STM32F103xE Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 5.3 Operating conditions 5.3.1 General operating conditions Table 10.
STM32F103xC, STM32F103xD, STM32F103xE 5.3.2 Electrical characteristics Operating conditions at power-up / power-down The parameters given in Table 11 are derived from tests performed under the ambient temperature condition summarized in Table 10. Table 11. Operating conditions at power-up / power-down Symbol Parameter tVDD 5.3.
Electrical characteristics 5.3.4 STM32F103xC, STM32F103xD, STM32F103xE Embedded reference voltage The parameters given in Table 13 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 13. Symbol VREFINT Embedded internal reference voltage Parameter Internal reference voltage Conditions Min Typ –40 °C < TA < +105 °C 1.16 1.20 1.26 V –40 °C < TA < +85 °C 1.16 1.20 1.24 V 5.1 17.
STM32F103xC, STM32F103xD, STM32F103xE Table 14. Electrical characteristics Maximum current consumption in Run mode, code with data processing running from Flash Max(1) Symbol Parameter Conditions Unit TA = 85 °C TA = 105 °C 72 MHz 69 70 48 MHz 50 50.5 36 MHz 39 39.5 24 MHz 27 28 16 MHz 20 20.5 8 MHz 11 11.5 72 MHz 37 37.5 48 MHz 28 28.5 External clock(2), all 36 MHz peripherals disabled 24 MHz 22 22.5 16.5 17 16 MHz 12.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled 70 8 MHz 16 MHz 24 MHz 36 MHz 48 MHz 72 MHz 60 Consumption (mA) 50 40 30 20 10 0 -45 25 70 85 105 Temperature (°C) Figure 15. Typical current consumption in Run mode versus frequency (at 3.
STM32F103xC, STM32F103xD, STM32F103xE Table 16. Electrical characteristics Maximum current consumption in Sleep mode, code running from Flash or RAM Max(1) Symbol Parameter Conditions External clock(2), all peripherals enabled IDD Supply current in Sleep mode fHCLK Unit TA = 85 °C TA = 105 °C 72 MHz 45 46 48 MHz 31 32 36 MHz 24 25 24 MHz 17 17.5 16 MHz 12.5 13 8 MHz 8 8 72 MHz 8.5 9 48 MHz 7 7.5 36 MHz 6 6.5 24 MHz 5 5.5 16 MHz 4.
Electrical characteristics Table 17. STM32F103xC, STM32F103xD, STM32F103xE Typical and maximum current consumptions in Stop and Standby modes Typ(1) Symbol Parameter Conditions VDD/VBAT VDD/VBAT VDD/VBAT TA = TA = = 2.0 V = 2.4 V = 3.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 17. Typical current consumption in Stop mode with regulator in run mode versus temperature at different VDD values 700 600 Consumption (µA) 500 400 300 200 2.4V 2.7V 3.0V 3.3V 3.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 18. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different VDD values 700 600 Consumption (µA) 500 400 300 200 2.4V 2.7V 3.0V 3.3V 3.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 19. Typical current consumption in Standby mode versus temperature at different VDD values 4.5 4 Consumption (µA) 3.5 3 2.5 2 1.5 2.4V 2.7V 3.0V 3.3V 3.6V 1 0.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Typical current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load). ● All peripherals are disabled except if it is explicitly mentioned. ● The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above).
STM32F103xC, STM32F103xD, STM32F103xE Table 19. Electrical characteristics Typical current consumption in Sleep mode, code running from Flash or RAM Typ(1) Symbol Parameter Conditions Supply current in Sleep mode All peripherals All peripherals enabled(2) disabled 72 MHz 29.5 6.4 48 MHz 20 4.6 36 MHz 15.1 3.6 24 MHz 10.4 2.6 16 MHz 7.2 2 8 MHz 3.9 1.3 4 MHz 2.6 1.2 2 MHz 1.85 1.15 1 MHz 1.5 1.1 500 kHz 1.3 1.05 125 kHz 1.2 1.05 64 MHz 25.6 5.1 48 MHz 19.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 20.
STM32F103xC, STM32F103xD, STM32F103xE Table 20. Peripheral current consumption(1) (continued) Peripheral APB2 Electrical characteristics Typical consumption at 25 °C GPIOA 0.55 GPIOB 0.72 GPIOC 0.72 GPIOD 0.55 GPIOE 1 GPIOF 0.72 GPIOG 1 ADC1(2) 1.9 ADC2 1.7 TIM1 1.8 SPI1 0.4 TIM8 1.7 USART1 0.9 ADC3 1.7 Unit mA 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Low-speed external user clock generated from an external source The characteristics given in Table 22 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 10. Table 22.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 21.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 24.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 23. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 fLSE OSC32_IN 32.768 kH z resonator Bias controlled gain RF STM32F103xx OSC32_OU T CL2 ai14146 5.3.7 Internal clock source characteristics The parameters given in Table 25 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10.
STM32F103xC, STM32F103xD, STM32F103xE Table 26. Electrical characteristics LSI oscillator characteristics (1) Symbol Parameter Min tsu(LSI)(3) LSI oscillator startup time IDD(LSI)(3) LSI oscillator power consumption Typ 0.65 Max Unit 85 µs 1.2 µA 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production.
Electrical characteristics 5.3.8 STM32F103xC, STM32F103xD, STM32F103xE PLL characteristics The parameters given in Table 28 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 28. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 1 8.
STM32F103xC, STM32F103xD, STM32F103xE Table 30. Electrical characteristics Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions Min(1) TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle (2) 10 kcycles at TA = 105 °C 10 (2) 20 at TA = 55 °C Unit kcycles Years 1. Based on characterization not tested in production. 2.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms TW .% &3-#?.% T V ./%?.% T W ./% T H .%?./% &3-#?./% &3-#?.7% TV !?.% &3-#?!; = T H !?./% !DDRESS TV ",?.% T H ",?./% &3-#?.",; = T H $ATA?.% T SU $ATA?./% TH $ATA?./% T SU $ATA?.% $ATA &3-#?$; = T V .!$6?.% TW .!$6 &3-#?.!$6 -3 6 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 31.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) (2) Table 31. Symbol Parameter Min Max Unit tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 5 ns tw(NADV) FSMC_NADV low time tHCLK + 1.5 ns 1. CL = 15 pF. 2. Based on characterisation, not tested in production. Figure 25.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Table 32. Symbol Parameter Min Max Unit tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 5.5 ns tw(NADV) FSMC_NADV low time tHCLK + 1.5 ns 1. CL = 15 pF. 2. Based on characterisation, not tested in production. Figure 26.
STM32F103xC, STM32F103xD, STM32F103xE Table 33.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 27. Asynchronous multiplexed PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:16] th(A_NWE) Address tv(BL_NE) th(BL_NWE) FSMC_NBL[1:0] NBL t v(A_NE) t v(Data_NADV) Address FSMC_AD[15:0] t v(NADV_NE) th(Data_NWE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14891B Table 34.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Synchronous waveforms and timings Figure 28 through Figure 31 represent synchronous waveforms and Table 36 through Table 38 provide the corresponding timings.
Electrical characteristics Table 35. STM32F103xC, STM32F103xD, STM32F103xE Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Max Unit tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 29. Synchronous multiplexed PSRAM write timings "53452. TW #,+ TW #,+ &3-#?#,+ $ATA LATENCY TD #,+, .%X, TD #,+, .%X( &3-#?.%X TD #,+, .!$6, TD #,+, .!$6( &3-#?.!$6 TD #,+, !6 TD #,+, !)6 &3-#?!; = TD #,+, .7%, TD #,+, .7%( &3-#?.7% TD #,+, !$)6 T D #,+, $ATA TD #,+, $ATA TD #,+, !$6 &3-#?!$; = !$; = $ $ &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU .7!)46 #,+( TH #,+( .7!)46 TD #,+, .",( &3-#?.
Electrical characteristics Table 36. STM32F103xC, STM32F103xD, STM32F103xE Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Max Unit tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings "53452. TW #,+ TW #,+ &3-#?#,+ TD #,+, .%X, TD #,+, .%X( $ATA LATENCY &3-#?.%X TD #,+, .!$6, TD #,+, .!$6( &3-#?.!$6 TD #,+, !)6 TD #,+, !6 &3-#?!; = TD #,+, ./%, TD #,+, ./%( &3-#?./% TSU $6 #,+( TH #,+( $6 TSU $6 #,+( TH #,+( $6 $ &3-#?$; = TSU .7!)46 #,+( $ $ TH #,+( .7!)46 &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU .7!)46 #,+( T H #,+( .
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 31. Synchronous non-multiplexed PSRAM write timings TW #,+ "53452. TW #,+ &3-#?#,+ TD #,+, .%X, TD #,+, .%X( $ATA LATENCY &3-#?.%X TD #,+, .!$6, TD #,+, .!$6( &3-#?.!$6 TD #,+, !6 TD #,+, !)6 &3-#?!; = TD #,+, .7%, TD #,+, .7%( &3-#?.7% TD #,+, $ATA &3-#?$; = TD #,+, $ATA $ $ &3-#?.7!)4 7!)4#&' B 7!)40/, B TSU .7!)46 #,+( TD #,+, .",( TH #,+( .7!)46 &3-#?.", AI H Table 38.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics PC Card/CompactFlash controller waveforms and timings Figure 32 through Figure 37 represent synchronous waveforms and Table 39 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration: ● COM.FSMC_SetupTime = 0x04; ● COM.FSMC_WaitSetupTime = 0x07; ● COM.FSMC_HoldSetupTime = 0x04; ● COM.FSMC_HiZSetupTime = 0x00; ● ATT.FSMC_SetupTime = 0x04; ● ATT.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 33.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 34. PC Card/CompactFlash controller waveforms for attribute memory read access FSMC_NCE4_1 tv(NCE4_1-A) FSMC_NCE4_2 th(NCE4_1-AI) High FSMC_A[10:0] FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) FSMC_NREG FSMC_NWE td(NCE4_1-NOE) tw(NOE) td(NOE-NCE4_1) FSMC_NOE tsu(D-NOE) th(NOE-D) FSMC_D[15:0](1) ai14897b 1. Only data bits 0...7 are read (bits 8...15 are disregarded).
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 35. PC Card/CompactFlash controller waveforms for attribute memory write access FSMC_NCE4_1 FSMC_NCE4_2 High tv(NCE4_1-A) th(NCE4_1-AI) FSMC_A[10:0] FSMC_NIOWR FSMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) FSMC_NREG td(NCE4_1-NWE) tw(NWE) FSMC_NWE td(NWE-NCE4_1) FSMC_NOE tv(NWE-D) FSMC_D[7:0](1) ai14898b 1. Only data bits 0...7 are driven (bits 8...15 remains HiZ). Figure 36.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access FSMC_NIOWR tv(NCEx-A) th(NCE4_1-AI) FSMC_A[10:0] FSMC_NREG FSMC_NWE FSMC_NOE FSMC_NIORD td(NCE4_1-NIOWR) tw(NIOWR) FSMC_NIOWR ATTxHIZ =1 tv(NIOWR-D) th(NIOWR-D) FSMC_D[15:0] ai14900b Table 39.
Electrical characteristics Table 39.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 38. NAND controller waveforms for read access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) FSMC_NWE td(ALE-NOE) th(NOE-ALE) FSMC_NOE (NRE) tsu(D-NOE) th(NOE-D) FSMC_D[15:0] ai14901b Figure 39. NAND controller waveforms for write access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NWE) th(NWE-ALE) FSMC_NWE FSMC_NOE (NRE) tv(NWE-D) th(NWE-D) FSMC_D[15:0] ai14902b Figure 40.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 41. NAND controller waveforms for common memory write access FSMC_NCEx Low ALE (FSMC_A17) CLE (FSMC_A16) td(ALE-NWE) tw(NWE) th(NWE-ALE) FSMC_NWE FSMC_NOE td(D-NWE) tv(NWE-D) th(NWE-D) FSMC_D[15:0] ai14913b Table 40. Symbol td(D-NWE)(2) Switching characteristics for NAND Flash read and write cycles(1) Parameter Min FSMC_D[15:0] valid before FSMC_NWE high 5tHCLK + 12 FSMC_NOE low width 4tHCLK – 1.
STM32F103xC, STM32F103xD, STM32F103xE 5.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 44. Symbol LU 5.3.
Electrical characteristics 5.3.14 STM32F103xC, STM32F103xD, STM32F103xE I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 46. Symbol VIL VIH Vhys Ilkg I/O static characteristics Parameter Conditions Min Typ Max Unit Standard IO input low level voltage –0.3 0.28*(VDD-2 V)+0.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 42. Standard I/O input characteristics - CMOS port 6)( 6), 6 6 $$ ENT 6 )( #-/3 7)(MIN 7),MAX 6 6 )( $$ QUIREM NDARD RE 6 6), $$ 6 $$ IREMENT 6 ), RD REQU #-/3 STANDA )NPUT RANGE NOT GUARANTEED STA 6$$ 6 AI B Figure 43.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 44. 5 V tolerant I/O input characteristics - CMOS port 6)( 6), 6 6 $$ TS 6 )( UIREMEN ARD REQ 3 STAND #-/ 6 ), 6 $$ T 6 ), 6 $$ REQUIRMEN /3 STANDARD #- 6 )( 6 $$ )NPUT RANGE NOT GUARANTEED 6$$ 6 6$$ AI B Figure 45.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Output voltage levels Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. All I/Os are CMOS and TTL compliant. Table 47.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 46 and Table 48, respectively. Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 10. Table 48.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 46. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 5.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 46).
Electrical characteristics 5.3.16 STM32F103xC, STM32F103xD, STM32F103xE TIM timer characteristics The parameters given in Table 50 are guaranteed by design. Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 50. Symbol tres(TIM) fEXT ResTIM tCOUNTER TIMx(1) characteristics Parameter Conditions Min Max 1 tTIMxCLK 13.
STM32F103xC, STM32F103xD, STM32F103xE 5.3.17 Electrical characteristics Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 10.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 48. I2C bus AC waveforms and measurement circuit VDD VDD 4 .7 k 4 .7 k STM32F103xx 100 SDA I2C bus 100 SCL S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) th(STA) SCL tw(SCLH) tsu(SDA) tw(SCLL) tr(SCL) th(SDA) tw(STO:STA) S TOP tsu(STO) tf(SCL) ai14149c 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 52. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics I2S - SPI characteristics Unless otherwise specified, the parameters given in Table 53 for SPI or in Table 54 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 53.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 49. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) tSU(NSS) SCK Input CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 50.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 51. SPI timing diagram - master mode(1) High NSS input SCK Input CPHA= 0 CPOL=0 SCK Input tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE I2S characteristics Table 54. Symbol Parameter Conditions DuCy(SCK) I2S slave input clock duty cycle fCK 1/tc(CK) I2S clock frequency tr(CK) tf(CK) I2S clock rise and fall time Capacitive load CL = 50 pF tv(WS) (1) WS valid time Master mode th(WS) (1) WS hold time Master mode tsu(WS) th(WS) Master mode (data: 16 bits, Audio frequency = 48 kHz) Slave mode (1) (1) tw(CKH) Slave mode 1.522 1.525 MHz 0 6.
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 52. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 10. Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK). Figure 54.
STM32F103xC, STM32F103xD, STM32F103xE Table 55. Electrical characteristics SD / MMC characteristics Symbol Parameter Conditions Min Max Unit 48 MHz Clock frequency in data transfer mode CL ≤ 30 pF 0 tW(CKL) Clock low time, fPP = 16 MHz CL ≤ 30 pF 32 tW(CKH) Clock high time, fPP = 16 MHz CL ≤ 30 pF 31 tr Clock rise time CL ≤ 30 pF 3.
Electrical characteristics Table 57. STM32F103xC, STM32F103xD, STM32F103xE USB DC electrical characteristics Symbol Parameter Conditions Min.(1) Max.(1) Unit 3.0(3) 3.6 V V Input levels VDD (4) USB operating voltage(2) I(USBDP, USBDM) 0.2 VCM(4) Differential common mode range Includes VDI range 0.8 2.5 VSE(4) Single ended receiver threshold 1.3 2.0 VDI Differential input sensitivity Output levels VOL Static output level low RL of 1.5 kΩ to 3.
STM32F103xC, STM32F103xD, STM32F103xE 5.3.19 Electrical characteristics 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 59 are preliminary values derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 10. Note: It is recommended to perform a calibration after each power-up. Table 59. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 2.4 3.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Equation 1: RAIN max formula TS R AIN < ------------------------------------------------------------- – R ADC N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 60. RAIN max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RAIN max (kΩ) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.
STM32F103xC, STM32F103xD, STM32F103xE Table 62. Electrical characteristics ADC accuracy(1) (2)(3) Symbol Parameter ET Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration Typ Max(4) ±2 ±5 ±1.5 ±2.5 ±1.5 ±3 ±1 ±2 ±1.5 ±3 Unit LSB 1. ADC DC accuracy values are measured after internal calibration.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 58. Typical connection diagram using the ADC VDD RAIN(1) VAIN VT 0.6 V AINx Cparasitic VT 0.6 V IL±1 µA STM32F103xx Sample and hold ADC converter RADC(1) 12-bit converter CADC(1) ai14150c 1. Refer to Table 59 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF).
STM32F103xC, STM32F103xD, STM32F103xE Electrical characteristics Figure 60. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F103xx VREF+/VDDA (See note 1) 1 µF // 10 nF VREF–/VSSA (See note 1) ai14389 1. VREF+ and VREF– inputs are available only on 100-pin packages.
Electrical characteristics STM32F103xC, STM32F103xD, STM32F103xE 5.3.20 DAC electrical specifications Table 63. DAC characteristics Symbol Parameter Min Typ Max Unit VDDA Analog supply voltage 2.4 3.6 V VREF+ Reference supply voltage 2.4 3.
STM32F103xC, STM32F103xD, STM32F103xE Table 63.
Electrical characteristics 5.3.21 STM32F103xC, STM32F103xD, STM32F103xE Temperature sensor characteristics Table 64. TS characteristics Symbol Parameter Min Typ Max Unit ±1 ±2 °C TL VSENSE linearity with temperature Avg_Slope Average slope 4.0 4.3 4.6 mV/°C V25 Voltage at 25 °C 1.34 1.43 1.52 V tSTART(1) Startup time 10 µs TS_temp(2)(1) ADC sampling time when reading the temperature 17.1 µs 4 1. Guaranteed by design, not tested in production. 2.
STM32F103xC, STM32F103xD, STM32F103xE 6 Package characteristics 6.1 Package mechanical data Package characteristics In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.
Package characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 62. BGA pad footprint $PAD $SM Table 65. Recommended PCB design rules (0.80/0.75 mm pitch BGA) Dimension Recommended values Dpad ∅ = 0.37 mm Dsm ∅ = 0.52 mm typ. (depends on solder mask registration tolerance) Solder paste 0.
STM32F103xC, STM32F103xD, STM32F103xE Package characteristics Figure 63. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline C Seating plane A2 ddd A4 C A A3 A1 B D D1 e A F M F E1 E e Øb (144 balls) Ball A1 Ø eee M C A Ø fff M B C X3_ME 1. Drawing is not to scale. Table 66. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data inches(1) millimeters Symbol Min Typ A A1 Max Typ Min 1.
Package characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 64. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline 1. Drawing is not to scale. Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min Typ A A1 Max Min 1.700 0.270 Max 0.0669 0.0106 A2 1.085 0.0427 A3 0.30 0.0118 A4 0.80 0.0315 b 0.45 0.50 0.55 0.0177 0.0197 0.0217 D 9.85 10.00 10.15 0.3878 0.3937 0.
STM32F103xC, STM32F103xD, STM32F103xE Package characteristics Figure 65. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package outline e1 A1 ball corner e D A1 ball corner e A H Detail A B C D e1 E E F Notch G L F H aaa Marking area A2 L G Wafer back side 8 A 7 6 5 4 Ball side 3 2 1 Side view Ball eee A1 b Seating plane (see note 2) Detail A rotated 90 ˚ CR_ME 1. Drawing is not to scale. 2.
Package characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 66. BGA pad footprint $PAD $SM Table 69. Recommended PCB design rules (0.5mm pitch BGA) Dimension Recommended values Dpad ∅ = 300 µm (circular) - 250 µm recommended Dsm ∅ = 340 µm min (for 300 µm diameter pad) PCD pad size Cu - Ni (2-6 µm) - Au (0.
STM32F103xC, STM32F103xD, STM32F103xE Package characteristics Figure 67. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline(1) Figure 68. Recommended footprint(1)(2) Seating plane C A A2 A1 c b ccc 0.25 mm gage plane C 108 109 D 73 1.35 72 0.35 k D1 0.5 A1 D3 L 73 108 L1 17.85 19.9 22.6 72 109 144 E1 E 37 1 36 E3 19.9 22.6 ai149 144 Pin 1 identification 37 36 1 e ME_1A 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 70.
Package characteristics STM32F103xC, STM32F103xD, STM32F103xE Figure 69. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline(1) Figure 70. Recommended footprint(1)(2) 0.25 mm 0.10 inch GAGE PLANE k 75 51 D L D1 76 L1 D3 51 75 50 0.5 C 76 50 0.3 16.7 14.3 b E3 E1 E 100 26 1.2 100 26 Pin 1 1 identification 1 25 ccc 25 C 12.3 e A1 16.7 ai14906b A2 A SEATING PLANE C 1L_ME 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 71.
STM32F103xC, STM32F103xD, STM32F103xE Package characteristics Figure 72. Recommended footprint(1)(2) Figure 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline(1) 48 33 D 0.3 ccc C D1 A A2 D3 33 48 49 32 49 12.7 32 0.5 10.3 b L1 10.3 E3 E1 E 64 L A1 K 1.2 64 1 17 Pin 1 identification 16 1 17 c 16 7.8 5W_ME 12.7 ai14909 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 72.
Package characteristics 6.2 STM32F103xC, STM32F103xD, STM32F103xE Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 10: General operating conditions on page 42.
STM32F103xC, STM32F103xD, STM32F103xE 6.2.2 Package characteristics Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 74: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.
Package characteristics STM32F103xC, STM32F103xD, STM32F103xE Using the values obtained in Table 73 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 74: Ordering information scheme). Figure 73. LQFP100 PD max vs.
STM32F103xC, STM32F103xD, STM32F103xE 7 Part numbering Part numbering Table 74.
Revision history 8 STM32F103xC, STM32F103xD, STM32F103xE Revision history Table 75. Document revision history Date Revision 07-Apr-2008 1 Initial release. 2 Document status promoted from Target Specification to Preliminary Data. Section 1: Introduction and Section 2.2: Full compatibility throughout the family modified. Small text changes. Note 2 added in Table 2: STM32F103xC, STM32F103xD and STM32F103xE features and peripheral counts on page 11.
STM32F103xC, STM32F103xD, STM32F103xE Table 75. Revision history Document revision history Date 21-Jul-2008 Revision Changes 3 Document status promoted from Preliminary Data to full datasheet. FSMC (flexible static memory controller) on page 15 modified. Number of complementary channels corrected in Figure 1: STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram. Power supply supervisor on page 17 modified and VDDA added to Table 10: General operating conditions on page 42.
Revision history STM32F103xC, STM32F103xD, STM32F103xE Table 75. Document revision history Date 12-Dec-2008 126/130 Revision Changes 4 Timers specified on page 1 (motor control capability mentioned). Section 2.2: Full compatibility throughout the family updated. Table 4: High-density timer feature comparison added. General-purpose timers (TIMx) and Advanced-control timers (TIM1 and TIM8) on page 19 updated. Figure 1: STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram modified.
STM32F103xC, STM32F103xD, STM32F103xE Table 75. Revision history Document revision history Date 30-Mar-2009 Revision Changes 5 I/O information clarified on page 1. Figure 4: STM32F103xC and STM32F103xE performance line BGA100 ballout corrected. I/O information clarified on page 1.
Revision history STM32F103xC, STM32F103xD, STM32F103xE Table 75. Document revision history Date 21-Jul-2009 24-Sep-2009 128/130 Revision Changes 6 Figure 1: STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram updated. Note 5 updated and Note 4 added in Table 5: High-density STM32F103xx pin definitions. VRERINT and TCoeff added to Table 13: Embedded internal reference voltage. Table 16: Maximum current consumption in Sleep mode, code running from Flash or RAM modified.
STM32F103xC, STM32F103xD, STM32F103xE Table 75. Revision history Document revision history Date 19-Apr-2011 Revision Changes 8 Updated package choice for 103Rx in Table 2 Updated footnotes below Table 7: Voltage characteristics on page 41 and Table 8: Current characteristics on page 41 Updated tw min in Table 21: High-speed external user clock characteristics on page 55 Updated startup time in Table 24: LSE oscillator characteristics (fLSE = 32.
STM32F103xC, STM32F103xD, STM32F103xE Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale.