Datasheet

ST72321Rx ST72321ARx ST72321Jx
133/193
INSTRUCTION SET OVERVIEW (Cont’d)
11.1.1 Inherent
All Inherent instructions consist of a single byte.
The opcode fully specifies all the required informa-
tion for the CPU to process the operation.
11.1.2 Immediate
Immediate instructions have 2 bytes, the first byte
contains the opcode, the second byte contains the
operand value.
11.1.3 Direct
In Direct instructions, the operands are referenced
by their memory address.
The direct addressing mode consists of two sub-
modes:
Direct (short)
The address is a byte, thus requires only one byte
after the opcode, but only allows 00 - FF address-
ing space.
Direct (long)
The address is a word, thus allowing 64 Kbyte ad-
dressing space, but requires 2 bytes after the op-
code.
11.1.4 Indexed (No Offset, Short, Long)
In this mode, the operand is referenced by its
memory address, which is defined by the unsigned
addition of an index register (X or Y) with an offset.
The indirect addressing mode consists of three
submodes:
Indexed (No Offset)
There is no offset, (no extra byte after the opcode),
and allows 00 - FF addressing space.
Indexed (Short)
The offset is a byte, thus requires only one byte af-
ter the opcode and allows 00 - 1FE addressing
space.
Indexed (long)
The offset is a word, thus allowing 64 Kbyte ad-
dressing space and requires 2 bytes after the op-
code.
11.1.5 Indirect (Short, Long)
The required data byte to do the operation is found
by its memory address, located in memory (point-
er).
The pointer address follows the opcode. The indi-
rect addressing mode consists of two submodes:
Indirect (short)
The pointer address is a byte, the pointer size is a
byte, thus allowing 00 - FF addressing space, and
requires 1 byte after the opcode.
Indirect (long)
The pointer address is a byte, the pointer size is a
word, thus allowing 64 Kbyte addressing space,
and requires 1 byte after the opcode.
Inherent Instruction Function
NOP No operation
TRAP S/W Interrupt
WFI
Wait For Interrupt (Low Pow-
er Mode)
HALT
Halt Oscillator (Lowest Power
Mode)
RET Sub-routine Return
IRET Interrupt Sub-routine Return
SIM Set Interrupt Mask (level 3)
RIM Reset Interrupt Mask (level 0)
SCF Set Carry Flag
RCF Reset Carry Flag
RSP Reset Stack Pointer
LD Load
CLR Clear
PUSH/POP Push/Pop to/from the stack
INC/DEC Increment/Decrement
TNZ Test Negative or Zero
CPL, NEG 1 or 2 Complement
MUL Byte Multiplication
SLL, SRL, SRA, RLC,
RRC
Shift and Rotate Operations
SWAP Swap Nibbles
Immediate Instruction Function
LD Load
CP Compare
BCP Bit Compare
AND, OR, XOR Logical Operations
ADC, ADD, SUB, SBC Arithmetic Operations