Datasheet
10 - GENERAL PURPOSE TIMER UNIT ST10F269
52/184
10 - GENERAL PURPOSE TIMER UNIT
The GPT unit is a flexible multifunctional timer/
counter structure which is used for time related
tasks such as event timing and counting, pulse
width and duty cycle measurements, pulse
generation, or pulse multiplication. The GPT unit
contains five 16-bit timers organized into two
separate modules GPT1 and GPT2. Each timer in
each module may operate independently in
several different modes, or may be concatenated
with another timer of the same module.
10.1 - GPT1
Each of the three timers T2, T3, T4 of the GPT1
module can be configured individually for one of
four basic modes of operation: timer, gated timer,
counter mode and incremental interface
mode.
In timer mode, the input clock for a timer is derived
from the CPU clock, divided by a programmable
prescaler.
In counter mode, the timer is clocked in reference
to external events.
Pulse width or duty cycle measurement is
supported in gated timer mode where the
operation of a timer is controlled by the ‘gate’ level
on an external input pin. For these purposes, each
timer has one associated port pin (TxIN) which
serves as gate or clock input.
Table 12 GPT1 Timer Input Frequencies,
Resolution and Periods (PQFP144 devices) and
Table 13 GPT1 Timer Input Frequencies,
Resolution and Periods (TQFP144 devices) list
the timer input frequencies, resolution and periods
for each pre-scaler option at 40MHz (Table 12
GPT1 Timer Input Frequencies, Resolution and
Periods (PQFP144 devices)) or 32MHz (Table 13
GPT1 Timer Input Frequencies, Resolution and
Periods (TQFP144 devices)) CPU clock. This also
applies to the Gated Timer Mode of T3 and to the
auxiliary timers T2 and T4 in Timer and Gated
Timer Mode. The count direction (up/down) for
each timer is programmable by software or may
be altered dynamically by an external signal on a
port pin (TxEUD).
In Incremental Interface Mode, the GPT1 timers
(T2, T3, T4) can be directly connected to the
incremental position sensor signals A and B by
their respective inputs TxIN and TxEUD.
Direction and count signals are internally derived
from these two input signals so that the contents
of the respective timer Tx corresponds to the
sensor position. The third position sensor signal
TOP0 can be connected to an interrupt input.
Timer T3 has output toggle latches (TxOTL) which
changes state on each timer over flow / underflow.
The state of this latch may be output on port pins
(TxOUT) for time out monitoring of external
hardware components, or may be used internally
to clock timers T2 and T4 for high resolution of
long duration measurements.
In addition to their basic operating modes, timers
T2 and T4 may be configured as reload or capture
registers for timer T3. When used as capture or
reload registers, timers T2 and T4 are stopped.
The contents of timer T3 is captured into T2 or T4
in response to a signal at their associated input
pins (TxIN).
Timer T3 is reloaded with the contents of T2 or T4
triggered either by an external signal or by a
selectable state transition of its toggle latch
T3OTL. When both T2 and T4 are configured to
alternately reload T3 on opposite state transitions
of T3OTL with the low and high times of a PWM
signal, this signal can be constantly generated
without software intervention.
Table 12 : GPT1 Timer Input Frequencies, Resolution and Periods (PQFP144 devices)
f
CPU
= 40MHz
Timer Input Selection T2I / T3I / T4I
000b 001b 010b 011b 100b 101b 110b 111b
Pre-scaler factor 8 16 32 64 128 256 512 1024
Input Freq 5MHz 2.5MHz 1.25MHz 625kHz 312.5kHz 156.25kHz 78.125kHz 39.1kHz
Resolution 200ns 400ns 0.8µs 1.6µs 3.2µs 6.4µs 12.8µs 25.6µs
Period maximum 13.1ms 26.2ms 52.4ms 104.8ms 209.7ms 419.4ms 838.9ms 1.678s