Datasheet
Table Of Contents
- Figure 1. Typical application circuit
- 1 Pin settings
- 2 Maximum ratings
- 3 Electrical characteristics
- 4 Functional description
- 5 Application notes - buck conversion
- 5.1 Closing the loop
- 5.2 GCO(s) control to output transfer function
- 5.3 Error amplifier compensation network
- 5.4 LED small signal model
- 5.5 Total loop gain
- 5.6 Compensation network design
- 5.7 Example of system design
- 5.8 Dimming operation
- 5.9 Component selection
- 5.10 Layout considerations
- 5.11 Thermal considerations
- 5.12 Short-circuit protection
- 5.13 Application circuit
- 6 Application notes - alternative topologies
- 7 Package mechanical data
- 8 Ordering information
- 9 Revision history

LED5000 Application notes - buck conversion
Doc ID 023951 Rev 1 15/51
Figure 7. Transconductance embedded error amplifier
R
C
and C
C
introduce a pole and a zero in the open loop gain. C
P
does not significantly affect
system stability but it can be useful to reduce the noise at the output of the error amplifier.
The transfer function of the error amplifier and its compensation network is:
Equation 8
Where A
vo
= G
m
· R
o
The poles of this transfer function are (if C
c
>> C
0
+C
P
):
Equation 9
Equation 10
whereas the zero is defined as:
Equation 11
AM13491v1
+
-
C
P
R
C
C
C
FB
COMP
dV
R
0
G
m
dV
V
+
E/A
R
C
C
C
C
P
C
0
A
0
s()
A
V0
1s+ R
c
C
c
⋅⋅()⋅
s
2
R
0
C
0
C
p
+()R
c
C
c
sR
0
C
c
⋅ R
0
C
0
C
p
+()R
c
C
c
⋅+⋅+()1+⋅+⋅⋅ ⋅⋅
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
f
P LF
1
2 π R
0
C
c
⋅⋅ ⋅
------------------------------------------=
f
P HF
1
2 π R
c
C
0
C
p
+()⋅⋅ ⋅
------------------------------------------------------------=
F
Z
1
2 π R
c
C
c
⋅⋅ ⋅
------------------------------------------=