Datasheet

Device description and operation L6743D
12/16
The use of multi-layer printed circuit board is recommended.
Small signal components and connections to critical nodes of the application as well as
bypass capacitors for the device supply are also important. Locate the bypass capacitor
(VCC, PVCC and BOOT capacitors) close to the device with the shortest possible loop and
use wide copper traces to minimize parasitic inductance.
Systems that do not use Schottky diodes in parallel to the low-side MOSFET might show big
negative spikes on the phase pin. This spike can be limited as well as the positive spike but
has an additional consequence: it causes the bootstrap capacitor to be over-charged. This
extra-charge can cause, in the worst case condition of maximum input voltage and during
particular transients, that boot-to-phase voltage overcomes the abs.max.ratings also
causing device failures. It is then suggested in this cases to limit this extra-charge by adding
a small resistor R
BOOT
in series to the boot capacitor. The use of R
BOOT
also contributes in
the limitation of the spike present on the BOOT pin.
For heat dissipation, place copper area under the IC. This copper area may be connected
with internal copper layers through several VIAs to improve the thermal conductivity. The
combination of copper pad, copper plane and VIAs under the driver allows the device to
reach its best thermal performances.
Figure 7. Driver turn-on and turn-off paths
Figure 8. External components placement example
R
GATE
R
INT
C
GD
C
GS
C
DS
VCC
LS DRIVER LS MOSFET
GND
LGATE
R
GATE
R
INT
C
GD
C
GS
C
DS
BOOT
HS DRIVER HS MOSFET
PHASE
HGATE
VCC
R
BOOT
C
BOOT
R
BOOT
C
BOOT
Rboot Cboot
1
2
3
4
LGATE
GND
PHASE
UGATE
VCC
EN
PWM
BOOT
5
6
7
8
L6743D