Datasheet
Table Of Contents
- Figure 1. Application circuit
- 1 Pin settings
- 2 Maximum ratings
- 3 Electrical characteristics
- 4 Functional description
- 5 Application information
- 5.1 Input capacitor selection
- 5.2 Inductor selection
- 5.3 Output capacitor selection
- 5.4 Compensation network
- 5.5 Thermal considerations
- 5.6 Layout considerations
- 5.7 Application circuit
- Figure 18. Demonstration board application circuit
- Table 9. Component list
- Figure 19. PCB layout (component side)
- Figure 20. PCB layout (bottom side)
- Figure 21. PCB layout (front side)
- Figure 22. Junction temperature vs output current
- Figure 23. Junction temperature vs output current
- Figure 24. Junction temperature vs output current
- Figure 25. Efficiency vs output current
- Figure 26. Efficiency vs output current
- Figure 27. Efficiency vs output current
- Figure 28. Load regulation
- Figure 29. Line regulation
- Figure 30. Short circuit behavior
- Figure 31. Load transient: from 0.1 A to 0.7 A
- Figure 32. Soft-start
- 6 Application ideas
- 7 Package mechanical data
- 8 Order codes
- 9 Revision history

Functional description L5980
14/42 Doc ID 13003 Rev 6
Figure 8. Overcurrent protection strategy
4.5 Inhibit function
The inhibit feature allows to put in stand-by mode the device.With INH pin higher than 1.9 V
the device is disabled and the power consumption is reduced to less than 30 μA. With INH
pin lower than 0.6 V, the device is enabled. If the INH pin is left floating, an internal pull up
ensures that the voltage at the pin reaches the inhibit threshold and the device is disabled.
The pin is also VCC compatible.
4.6 Hysteretic thermal shutdown
The thermal shutdown block generates a signal that turns off the power stage if the junction
temperature goes above 150 °C. Once the junction temperature goes back to about 130 °C,
the device restarts in normal operation. The sensing element is very close to the PDMOS
area, so ensuring an accurate and fast temperature detection.