TS488 TS489 Pop-free 120 mW stereo headphone amplifier Datasheet − production data Features TS488IST - MiniSO-8 ■ Pop and click noise protection circuitry ■ Operating range from VCC = 2.2 V to 5.5 V ■ Standby mode active low (TS488) or high (TS489) ■ Output power: – 120 mW at 5 V, into 16 Ω with 0.1% THD+N max (1 kHz) – 55 mW at 3.3 V, into 16 Ω with 0.
Contents TS488-TS489 Contents 1 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . .
TS488-TS489 1 Typical application schematic Typical application schematic Figure 1. Typical application for the TS488-TS489 TS488=stdby TS489=stdby Table 1. Application component information Component Functional description Rin1,2 Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)). Cin1,2 Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal.
Absolute maximum ratings and operating conditions 2 TS488-TS489 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings Symbol Value Unit 6 V -0.3 V to VCC +0.3 V V -65 to +150 °C Maximum junction temperature 150 °C Rthja Thermal resistance junction-to-ambient MiniSO-8 DFN8 215 70 °C/W Pdiss Power dissipation(2): MiniSO-8 DFN8 0.58 1.
TS488-TS489 Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics at VCC = +5 V with GND = 0 V, Tamb = 25 °C (unless otherwise specified) Symbol ICC ISTBY Pout Parameter Supply current Standby current Output power Conditions Typ. Max. Unit No input signal, no load 2 2.7 mA No input signal, VSTBY = GND for TS488, RL = 32 Ω 10 1000 No input signal, VSTBY = VCC for TS489, RL = 32 Ω 10 THD+N = 0.
Electrical characteristics Table 5. Symbol ICC ISTBY Pout TS488-TS489 Electrical characteristics at VCC = +3.3 V with GND = 0 V, Tamb = 25 °C (unless otherwise specified) (1) Parameter Supply current Standby current Output power Conditions Typ. Max. Unit No input signal, no load 1.8 2.5 mA No input signal, VSTBY = GND for TS488, RL = 32 Ω 10 1000 No input signal, VSTBY = VCC for TS489, RL = 32 Ω 10 1000 THD+N = 0.
TS488-TS489 Table 6. Symbol ICC ISTBY Pout Electrical characteristics Electrical characteristics at VCC = +2.5 V with GND = 0 V, Tamb = 25 °C (unless otherwise specified) Parameter Supply current Standby current Output power Conditions Typ. Max. Unit No input signal, no load 1.8 2.5 mA No input signal, VSTBY = GND for TS488, RL = 32 Ω 10 1000 No input signal, VSTBY = VCC for TS489, RL = 32 Ω 10 THD+N = 0.
Electrical characteristics Table 7. TS488-TS489 Index of graphics Description Open-loop frequency response Figure 2 to Figure 11 Power derating curves Figure 12 to Figure 13 Signal-to-noise ratio vs. power supply voltage Figure 14 to Figure 19 Power dissipation vs. output power per channel Figure 20 to Figure 22 Power supply rejection ratio vs. frequency Figure 23 to Figure 25 Total harmonic distortion plus noise vs. output power Figure 26 to Figure 43 Total harmonic distortion plus noise vs.
TS488-TS489 225 125 Vcc=2.5V RL=16 Ω TAMB=25°C Open-loop frequency response 225 125 50 90 50 90 25 45 25 45 0 0 Gain (dB) 75 Phase (°) 100 135 gain 75 gain 135 0 phase -25 -45 -25 -45 -50 -90 -50 -90 -75 0 10 -135 -75 0 10 2 10 4 10 6 10 8 10 2 Figure 4. 10 4 10 -135 6 10 8 Frequency (Hz) Open-loop frequency response 125 gain Vcc=2.5V RL=16 Ω CL=400pF TAMB=25°C 100 Figure 5.
Electrical characteristics Open-loop frequency response 225 125 gain Vcc=2.5V RL=32 Ω CL=400pF TAMB=25°C Open-loop frequency response gain 50 90 50 90 25 45 25 45 0 0 Gain (dB) 75 Phase (°) 100 180 135 0 0 phase phase -25 -45 -25 -45 -50 -90 -50 -90 -75 0 10 -135 -75 0 10 2 10 4 10 6 10 8 10 2 4 10 -135 6 10 8 Frequency (Hz) Figure 10. Open-loop frequency response 125 100 10 Vcc=2.5V RL=600 Ω TAMB=25°C gain Figure 11.
TS488-TS489 Electrical characteristics Figure 14. Signal-to-noise ratio vs. power supply voltage Figure 15. Signal-to-noise ratio vs. power supply voltage 106 A-weighted Filter Av=-1, T AMB =25°C 108 Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 110 Cb=1μ F THD+N<0.4% 106 104 102 RL=16Ω 100 98 3 4 Unweighted Filter (20Hz-20kHz) Av=-1, T AMB =25°C 102 Cb=1μ F THD+N<0.4% 100 RL=16Ω 98 RL=32Ω 96 RL=32Ω 2 104 5 94 6 2 3 4 Power Supply Voltage (V) Figure 16.
Electrical characteristics TS488-TS489 Figure 20. Power dissipation vs. output power Figure 21. Power dissipation vs. output power per channel per channel 30 40 Vcc=3.3V, F=1kHz, THD+N<1% 35 RL=16Ω 25 Power Dissipation (mW) Power Dissipation (mW) Vcc=2.5V, F=1kHz, THD+N<1% 20 15 RL=32 Ω 10 5 30 RL=16 Ω 25 RL=32 Ω 20 15 10 5 0 0 5 10 15 20 25 30 Output Power (mW) 35 0 40 0 10 20 30 40 50 Output Power (mW) 60 70 Figure 22. Power dissipation vs. output power Figure 23.
TS488-TS489 Electrical characteristics Figure 26. Total harmonic distortion plus noise vs. output power Figure 27. Total harmonic distortion plus noise vs. output power 10 10 F=20kHz, R L=16Ω A V =-1, T AMB =25°C A V =-1, TAMB =25°C BW=20Hz-120kHz 1 BW=20Hz-120kHz V CC =5V THD+N (%) THD+N (%) F=1kHz, R L=16Ω V CC =3.3V 0.1 V CC =2.5V 1 V CC =5V V CC=3.3V V CC =2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 10 Output Power (mW) Figure 28. Total harmonic distortion plus noise vs.
Electrical characteristics TS488-TS489 Figure 32. Total harmonic distortion plus noise vs. output power Figure 33. Total harmonic distortion plus noise vs. output power 10 10 F=20kHz, R L=16Ω A V =-2, T AMB =25°C A V =-2, TAMB =25°C BW=20Hz-120kHz 1 V CC =3.3V 0.1 V CC =5V BW=20Hz-120kHz V CC =5V THD+N (%) THD+N (%) F=1kHz, R L=16Ω V CC =2.5V 1 V CC =3.3V V CC =2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 10 Output Power (mW) Figure 34. Total harmonic distortion plus noise vs.
TS488-TS489 Electrical characteristics Figure 38. Total harmonic distortion plus noise vs. output power Figure 39. Total harmonic distortion plus noise vs. output power 10 10 F=20kHz, R L=16Ω A V =-4, T AMB =25°C A V =-4, T AMB =25°C BW=20Hz-120kHz BW=20Hz-120kHz V CC=5V THD+N (%) 1 THD+N (%) F=1kHz, R L=16Ω V CC=3.3V 0.1 V CC =2.5V V CC =5V 1 V CC =3.3V 0.01 1E-3 V CC=2.5V 1 10 100 0.1 200 1 10 Output Power (mW) Figure 40. Total harmonic distortion plus noise vs.
Electrical characteristics TS488-TS489 Figure 44. Total harmonic distortion plus noise vs. frequency Figure 45. Total harmonic distortion plus noise vs. frequency 1 R L=16Ω, A V =-1 R L=32Ω, A V =-1 BW=20Hz-120kHz TAMB =25°C BW=20Hz-120kHz TAMB =25°C 0.1 THD+N (%) THD+N (%) 1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW 0.01 0.1 Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW Vcc=5V, Po=60mW 0.01 1E-3 20 100 1k 10k 1E-3 20k 20 100 1k Frequency (Hz) Figure 46.
TS488-TS489 Electrical characteristics Figure 50. Total harmonic distortion plus noise vs. frequency Figure 51. Total harmonic distortion plus noise vs. frequency 1 R L=16Ω, A V =-4 R L=32Ω, A V =-4 BW=20Hz-120kHz TAMB =25°C BW=20Hz-120kHz TAMB =25°C 0.1 THD+N (%) THD+N (%) 1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW 0.01 0.1 Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW 0.01 Vcc=5V, Po=100mW 1E-3 100 20 1k Vcc=5V, Po=60mW 10k 1E-3 20k 100 20 1k Frequency (Hz) Figure 52.
Electrical characteristics TS488-TS489 Figure 56. Output power vs. power supply voltage Figure 57. Output power vs. power supply voltage 140 240 R L=32Ω , F=1kHz R L=16Ω , F=1kHz 200 BW=20Hz-120kHz Output Power (mW) Output Power (mW) 120 TAMB =25°C 160 120 THD+N=10% 80 40 0 3 4 BW=20Hz-120kHz 100 80 60 THD+N=10% 40 THD+N=1% 20 THD+N=1% 2 T AMB =25°C 5 0 6 2 3 Power Supply Voltage (V) Figure 58. Output voltage swing vs.
TS488-TS489 Electrical characteristics Figure 62. Current consumption vs. standby voltage Figure 63. Current consumption vs. standby voltage 2.5 3.5 Current Consumption (mA) Current Consumption (mA) TS488, T AMB =85°C 2.0 TS488, TAMB =25°C 1.5 TS488, TAMB =-40°C 1.0 0.5 3.0 TS489, T AMB =85°C 2.5 TS489, TAMB =25°C 2.0 TS489, T AMB =-40°C 1.5 1.0 0.5 V CC =3.3V 0.0 0.0 0.5 1.0 1.5 2.0 2.5 V CC =3.3V 0.0 0.0 3.0 0.5 1.0 Standby Voltage (V) 1.5 Figure 64. Current consumption vs.
Electrical characteristics TS488-TS489 Figure 68. Crosstalk vs. frequency Figure 69. Crosstalk vs. frequency 0 0 Vcc=3.3V, RL=16Ω Av=-1, Po=40mW T AMB =25°C -40 -60 Vcc=3.
TS488-TS489 Electrical characteristics Figure 74. Crosstalk vs. frequency Figure 75. Crosstalk vs. frequency 0 0 Vcc=3.3V, RL=16Ω Av=-4, Po=40mW T AMB =25°C -40 OUT2 to OUT1 -60 Vcc=3.3V, RL=32Ω Av=-4, Po=25mW T AMB=25°C -20 Crosstalk (dB) Crosstalk (dB) -20 OUT1 to OUT2 -80 -100 -40 -60 OUT2 to OUT1 -80 -100 -120 20 100 1k 10k -120 20k 100 20 Frequency (Hz) 1k 10k 20k 10k 20k Frequency (Hz) Figure 76. Crosstalk vs. frequency Figure 77. Crosstalk vs.
Application information TS488-TS489 4 Application information 4.1 Power dissipation and efficiency Hypotheses: ■ Voltage and current in the load are sinusoidal (Vout and Iout). ■ Supply voltage is a pure DC source (VCC).
TS488-TS489 Application information and its value is: 2 P diss Note: MAX V CC -(W) = -----------2 π RL This maximum value depends only on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply: πV peak P OUT - = -----------------η = -----------------P supply 2V CC The maximum theoretical value is reached when Vpeak = VCC/2, so η = π --- = 78.5% 4 4.2 Total power dissipation The TS488/9 is stereo (dual channel) amplifier.
Application information TS488-TS489 Figure 79. Lower cutoff frequency vs. input capacitor Figure 80. Lower cutoff frequency vs. output capacitor 10k 10k R L=16 Ω Lower Cut-off frequency (Hz) Lower Cut-off frequency (Hz) Rin=10kΩ Rin=20kΩ 1k Rin=50kΩ Rin=100kΩ 100 10 1 10 100 R L =32 Ω 1k R L=600 Ω 100 10 0.1 1000 1 Cin (nF) Note: 4.
TS488-TS489 4.5 Application information Gain setting In the flat frequency response region (with no effect from Cin, Cout, Cfeed), the output voltage is: R feed⎞ V OUT = V IN ⋅ ⎛⎝ – ------------- = V IN ⋅ A V R in ⎠ The gain AV is: R feed A V = – ------------R in 4.6 Decoupling of the circuit Two capacitors are needed to properly bypass the TS488 (TS489), a power supply capacitor Cs and a bias voltage bypass capacitor Cb.
Application information 4.8 TS488-TS489 Wake-up time When the standby is released to put the device ON, the bypass capacitor Cb is charged immediately. As Cb is directly linked to the bias of the amplifier, the bias will not work properly until the Cb voltage is correct. The time to reach this voltage plus a time delay of 20 ms (pop precaution) is called the wake-up time or tWU; it is specified in the electrical characteristics table with Cb = 1µF.
TS488-TS489 Application information Connecting the headphones Generally headphones are connected using jack connectors. To prevent a pop in the headphones when plugging in the jack, a pulldown resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when the headphones are not plugged in. Pulldown resistors with a value of 1 kΩ are high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second.
Package mechanical data 5 TS488-TS489 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.
TS488-TS489 5.2 Package mechanical data DFN8 package DFN8 (2x2) MECHANICAL DATA mm. inch DIM. A MIN. TYP MAX. MIN. TYP. MAX. 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 A3 0.002 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 0.020 0.50 L 0.50 0.020 ddd 0.08 0.
Ordering information 6 TS488-TS489 Ordering information Table 8.
TS488-TS489 Revision history 7 Revision history Table 9. Document revision history Date Revision 2-Jan-2006 1 First release corresponding to the product preview version. 1-Feb-2006 2 Removal of typical application schematic on first page (it appears in Figure 1 on page 3). Minor grammatical and formatting corrections throughout. 4-Aug-2006 3 Update of marking. Update of DFN8 package height. Editorial update.
TS488-TS489 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale.