STM32L486xx Ultra-low-power ARM® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, 1MB Flash, 128KB SRAM, USB OTG FS, LCD, ext. SMPS, AES Datasheet - production data Features • Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range – 300 nA in VBAT mode: supply for RTC and 32x32-bit backup registers – 30 nA Shutdown mode (5 wakeup pins) – 120 nA Standby mode (5 wakeup pins) – 420 nA Standby mode with RTC – 1.1 µA Stop 2 mode, 1.
STM32L486xx – – – – – 1x LPUART (Stop 2 wake-up) 3x SPIs (4x SPIs with the Quad SPI) CAN (2.0B Active) and SDMMC interface SWPMI single wire protocol master I/F IRTIM (Infrared interface) STM32L486xx Downloaded from Arrow.com. • True random number generator • CRC calculation unit, 96-bit unique ID • Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™ Table 1.
STM32L486xx Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 ARM® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.
Contents 4 4/258 Downloaded from Arrow.com. STM32L486xx 3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.
STM32L486xx Contents 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . .
Contents 7 STM32L486xx 6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.3.25 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.3.26 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.3.28 Communication interfaces characteristics . . . . .
STM32L486xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of tables Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. 8/258 Downloaded from Arrow.com.
STM32L486xx Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128.
List of tables STM32L486xx Table 129. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 10/258 Downloaded from Arrow.com.
STM32L486xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43.
List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. 12/258 Downloaded from Arrow.com. STM32L486xx Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STM32L486xx 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32L486xx microcontrollers. This document should be read in conjunction with the STM32L4x6 reference manual (RM0351). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM® Cortex®-M4 core, please refer to the Cortex®-M4 Technical Reference Manual, available from the www.arm.com website.
Description 2 STM32L486xx Description The STM32L486xx devices are the ultra-low-power microcontrollers based on the highperformance ARM® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.
STM32L486xx Description Table 2. STM32L486xx family device features and peripheral counts Peripheral STM32L486Zx STM32L486Qx STM32L486Vx Flash memory No No 2 2 Yes 8x28 or 4x32 Yes 8x28 or 4x32 128 KB External memory controller for static memories Yes Yes Yes(1) Quad SPI Yes Advanced control 2 (16-bit) General purpose 5 (16-bit) 2 (32-bit) Basic 2 (16-bit) Low power 2 (16-bit) SysTick timer 1 Watchdog timers (independent , window) 2 SPI 3 2C 3 I Comm.
Description STM32L486xx Table 2. STM32L486xx family device features and peripheral counts (continued) Peripheral (2) STM32L486Zx STM32L486Qx STM32L486Vx STM32L486Jx STM32L486Rx GPIOs Wakeup pins Nb of I/Os down to 1.
STM32L486xx Description Figure 1. STM32L486xx block diagram -7&. 6:&/. -7$* 6: 038 (70 19,& -7'2 6:' -7'2 &/. 1(> @ 1/ 1%/> @ $> @ '> @ 12( 1:( 1:$,7 1&( ,17 DV $) )OH[LEOH VWDWLF PHPRU\ FRQWUROOHU )60& 65$0 365$0 125 )ODVK 1$1' )ODVK 1-7567 -7', 75$&(&/. ' %86 $50 &RUWH[ 0 0+] )38 %. B,2> @ &/. 1&6 4XDG 63, PHPRU\ LQWHUIDFH , %86 $57 $&&(/ &$&+( 51* )ODVK XS WR 0% $(6 # 9''86% $+% EXV PDWUL[ 65$0 .% ),)2 6 %86 65$0 .
Functional overview STM32L486xx 3 Functional overview 3.1 ARM® Cortex®-M4 core with FPU The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
STM32L486xx 3.4 Functional overview Embedded Flash memory STM32L486xx devices feature 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read-while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2 Kbyte.
Functional overview STM32L486xx The whole non-volatile memory embeds the error correction code (ECC) feature supporting: 3.5 • single error detection and correction • double error detection. • The address of the ECC fail can be read in the ECC register Embedded SRAM STM32L486xx devices feature 128 Kbyte of embedded SRAM. This SRAM is split into two blocks: • 96 Kbyte mapped at address 0x2000 0000 (SRAM1) • 32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
STM32L486xx 3.7 Functional overview Boot modes At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device firmware upgrade). 3.
Functional overview STM32L486xx Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V tolerant (refer to Table 19: Voltage characteristics). Note: VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1 or VDDIO2, with VDDIO1 = VDD. VDDIO2 supply voltage level is independent from VDDIO1. Figure 2.
STM32L486xx Functional overview interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages VDDA, VDDUSB, VDDIO2 with a fixed threshold in order to ensure that the peripheral is in its functional supply range.
Functional overview 3.9.3 STM32L486xx Voltage regulator Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR). • The MR is used in the Run and Sleep modes and in the Stop 0 mode. • The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com. Stop 1 Stop 0 Mode DocID025977 Rev 6 LPR Range 2(8) Range 1(8) (1) Regulator No No CPU Off Off Flash ON ON SRAM Wakeup source Reset pin, all I/Os BOR, PVD, PVM RTC, LCD, IWDG COMPx (x=1..2) USARTx (x=1...5)(9) LPUART1(9) I2Cx (x=1...3)(10) LPTIMx (x=1,2) OTG_FS(11) SWPMI1(12) Reset pin, all I/Os BOR, PVD, PVM RTC, LCD, IWDG COMPx (x=1..2) USARTx (x=1...5)(9) LPUART1(9) I2Cx (x=1...
Downloaded from Arrow.com. DocID025977 Rev 6 OFF OFF Powered Off Powered Off No CPU Off Off Off Flash Powered Off Powered Off SRAM2 ON ON SRAM Reset pin, all I/Os BOR, PVD, PVM RTC, LCD, IWDG COMPx (x=1..2) I2C3(10) LPUART1(9) LPTIM1 Reset pin 5 I/Os (WKUPx)(13) BOR, RTC, IWDG Reset pin 5 I/Os (WKUPx)(13) RTC BOR, PVD, PVM RTC, LCD, IWDG COMPx (x=1..2) I2C3(10) LPUART1(9) LPTIM1 *** All other peripherals are frozen. BOR, RTC, IWDG *** All other peripherals are powered off.
/258 Downloaded from Arrow.com. 14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5. 12. SWPMI1 wakeup by resume from suspend. 11. OTG_FS wakeup by resume from suspend and attach detection protocol event. 10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
STM32L486xx Functional overview By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Low-power run mode This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current.
Functional overview • STM32L486xx Shutdown mode The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.
STM32L486xx Functional overview Table 5.
Functional overview STM32L486xx Table 5.
STM32L486xx Functional overview Table 5. Functionalities depending on the working mode(1) (continued) - - - AES hardware accelerator O O O O - - - - - - - - - CRC calculation unit O O O O - - - - - - - - - GPIOs O O O O O O O O (9) 5 pins (11) 5 pins - Peripheral Run Sleep Lowpower run Lowpower sleep - (10) Wakeup capability Shutdown Wakeup capability Standby Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT (10) 1.
Functional overview 3.10 STM32L486xx Interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.
STM32L486xx Functional overview Low-power run Low-power sleep Stop 0 / Stop 1 Stop 2 GPIO Sleep Interconnect source Run Table 6. STM32L486xx peripherals interconnect matrix (continued) TIMx External trigger Y Y Y Y - - LPTIMERx External trigger Y Y Y Y Y (1) ADCx DACx DFSDM1 Conversion external trigger Y Y Y Y - - Interconnect destination Interconnect action Y 1. LPTIM1 only. DocID025977 Rev 6 35/258 60 Downloaded from Arrow.com.
Functional overview 3.11 STM32L486xx Clocks and startup The clock controller (see Figure 3) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.
STM32L486xx Functional overview interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt. • Clock-out capability: – MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application – LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes (except VBAT). Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains.
Functional overview STM32L486xx Figure 3. Clock tree WR ,:'* /6, 5& N+] /6&2 WR 57& DQG /&' 26& B287 /6( 26& N+] 26& B,1 /6( /6, +6( 0&2 ĺ WR 3:5 6<6&/. +6, WR $+% EXV FRUH PHPRU\ DQG '0$ &ORFN VRXUFH FRQWURO 26&B287 +6( 26& 0+] 26&B,1 $+% 35(6& +6( &ORFN GHWHFWRU +&/. )&/. &RUWH[ IUHH UXQQLQJ FORFN WR &RUWH[ V\VWHP WLPHU 06, +6, 6<6&/. $3% 35(6& 3&/. WR $3% SHULSKHUDOV [ RU [ +6, 5& 0+] /6( +6, 6<6&/.
STM32L486xx 3.12 Functional overview General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.
Functional overview STM32L486xx 3.14 Interrupts and events 3.14.1 Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
STM32L486xx 3.15 Functional overview Analog to digital converter (ADC) The device embeds 3 successive approximation analog-to-digital converters with the following features: • 12-bit native resolution, with built-in calibration • 5.33 Msps maximum conversion rate with full resolution Down to 18.75 ns sampling time – Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution) • Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
Functional overview STM32L486xx To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 8. Temperature sensor calibration values 3.15.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.
STM32L486xx Functional overview This digital interface supports the following features: • Up to two DAC output channels • 8-bit or 12-bit output mode • Buffer offset calibration (factory and user trimming) • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion • Sample and hold low-p
Functional overview 3.18 STM32L486xx Comparators (COMP) The STM32L486xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output channels • Internal reference voltage or submultiple (1/4, 1/2, 3/4).
STM32L486xx Functional overview The main features of the touch sensing controller are the following: • Proven and robust surface charge transfer acquisition principle • Supports up to 24 capacitive sensing channels • Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time • Spread spectrum feature to improve system robustness in noisy environments • Full hardware management of the charge transfer acquisition sequence • Programmable charge transfer freq
Functional overview STM32L486xx hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM). DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.
STM32L486xx Functional overview without having any impact on the timing of “injected” conversions – “injected” conversions for precise timing and with high conversion priority Table 10. DFSDM1 implementation DFSDM features DFSDM1 Number of channels 8 Number of filters 4 Input from internal ADC - Supported trigger sources 3.
Functional overview 3.25 STM32L486xx Timers and watchdogs The STM32L486xx includes two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 11.
STM32L486xx 3.25.2 Functional overview General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) There are up to seven synchronizable general-purpose timers embedded in the STM32L486xx (see Table 11 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.
Functional overview STM32L486xx This low-power timer supports the following features: 3.25.5 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous/ one shot mode • Selectable software/hardware input trigger • Selectable clock source – Internal clock sources: LSE, LSI, HSI16 or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application).
STM32L486xx 3.26 Functional overview Real-time clock (RTC) and backup registers The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms. • On-the-fly correction from 1 to 32767 RTC clock pulses.
Functional overview 3.27 STM32L486xx Inter-integrated circuit interface (I2C) The device embeds three I2C. Refer to Table 12: I2C implementation for the features implementation. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • I2C-bus specification and user manual rev.
STM32L486xx 3.28 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The STM32L486xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5). These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.
Functional overview 3.29 STM32L486xx Low-power universal asynchronous receiver transmitter (LPUART) The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud.
STM32L486xx 3.30 Functional overview Serial peripheral interface (SPI) Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All SPI interfaces can be served by the DMA controller. 3.
Functional overview STM32L486xx Table 14. SAI implementation SAI features(1) SAI1 SAI2 I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X X Mute mode X X Stereo/Mono audio frame capability. X X 16 slots X X Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X X X (8 Word) X (8 Word) X X FIFO Size SPDIF 1. X: supported 3.
STM32L486xx Functional overview The CAN peripheral supports: • Supports CAN protocol version 2.0 A, B Active • Bit rates up to 1 Mbit/s • Transmission • • • 3.
Functional overview STM32L486xx The major features are: • Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints • 12 host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • USB 2.0 LPM (Link Power Management) support • Battery Charging Specification Revision 1.
STM32L486xx 3.37 Functional overview Quad SPI memory interface (QUADSPI) The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories.
Functional overview STM32L486xx 3.38 Development support 3.38.1 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
STM32L486xx 4 Pinouts and pin description Pinouts and pin description 9'' 966 3( 3( 3% 3% %227 3% 3% 3% 3% 1-7567 3% -7'2 75$&(6:2 3* 9'',2 966 3* 3* 3* 3* 3* 3* 3' 3' 9'' 966 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ -7', 3$ -7&. 6:&/. Figure 5.
Pinouts and pin description STM32L486xx 9'' 966 9'' 3( 3( 3% 3% %227 3% 3% 3% 3% 1-7567 3% -7'2 75$&(6:2 9'',2 966 3* 3* 3* 3* 3* 3* 3' 3' 9'' 966 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ -7', 3$ -7&. 6:&/. Figure 6.
STM32L486xx Pinouts and pin description Figure 7.
Pinouts and pin description STM32L486xx Figure 9.
STM32L486xx Pinouts and pin description 9'' 966 3% 3% %227 3% 3% 3% 3% 1-7567 3% -7'2 75$&(6:2 3' 3& 3& 3& 3$ -7', 3$ -7&. 6:&/. Figure 11.
Pinouts and pin description STM32L486xx 9'' 966 9'' 3% 3% %227 3% 3% 3% 3% 1-7567 3% -7'2 75$&(6:2 3& 3& 3& 3$ -7', 3$ -7&. 6:&/. Figure 12.
STM32L486xx Pinouts and pin description Table 15. Legend/abbreviations used in the pinout table (continued) Name Abbreviation Notes Definition Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset. Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions 1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla. 2.
Pinouts and pin description STM32L486xx Table 16.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16. STM32L486xx pin definitions (continued) - - - - - - - - - - 74/258 Downloaded from Arrow.com.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16. STM32L486xx pin definitions (continued) 34 34 H2 H2 35 35 G2 G3 36 36 G1 G1 - - - - 76/258 Downloaded from Arrow.com.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16.
STM32L486xx Pinouts and pin description Table 16.
Pinouts and pin description STM32L486xx Table 16. STM32L486xx pin definitions (continued) 57 56 C7 E7 58 57 B7 E8 91 92 C5 B5 135 134 136 135 PB5 PB6 59 58 A7 B7 93 B4 137 136 PB7 60 59 D7 A7 94 A4 138 137 BOOT0 84/258 Downloaded from Arrow.com.
STM32L486xx Pinouts and pin description Table 16.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com.
Downloaded from Arrow.com.
/258 Downloaded from Arrow.com. Port H - - PH1 - - CAN1, TSC UART4, UART5, LPUART1 PH0 Port AF9 AF8 - - OTG_FS, QUADSPI AF10 - - LCD AF11 - - SDMMC1, COMP1, COMP2, FMC, SWPMI1 AF12 - - SAI1, SAI2 AF13 AF14 - - TIM2, TIM15, TIM16, TIM17, LPTIM2 Table 18.
STM32L486xx 5 Memory mapping Memory mapping Figure 13.
Memory mapping STM32L486xx Table 19. STM32L486xx memory map and peripheral register boundary addresses(1) Bus AHB3 AHB2 - AHB1 102/258 Downloaded from Arrow.com.
STM32L486xx Memory mapping Table 19.
Memory mapping STM32L486xx Table 19. STM32L486xx memory map and peripheral register boundary addresses(1) (continued) Bus APB1 104/258 Downloaded from Arrow.com.
STM32L486xx Memory mapping Table 19.
Electrical characteristics STM32L486xx 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range).
STM32L486xx 6.1.6 Electrical characteristics Power supply scheme Figure 16. Power supply scheme 9%$7 9%$7 ĂĐŬƵƉ ĐŝƌĐƵŝƚƌLJ %DFNXS FLUFXLWU\ ;>^ ͕ Zd ͕ /6( 57& ĂĐŬƵƉ ƌĞŐŝƐƚĞƌƐͿ %DFNXS UHJLVWHUV ĂĐŬƵƉ ĐŝƌĐƵŝƚƌLJ ;>^ ͕ Zd ͕ ĂĐŬƵƉ ƌĞŐŝƐƚĞƌƐͿ 99&25( &25( 9%$7 ϭ͘ϱϱ ʹ ϯ͘ϲ s ± 9 WŽǁĞƌ ƐǁŝƚĐŚ 3RZHU VZLWFK ϭ͘ϱϱ ʹ ϯ͘ϲ s 99'' '' WŽǁĞƌ ƐǁŝƚĐŚ Q [ 9'' Q [ 9'' [ 9'' ZĞŐƵůĂƚŽƌ 5HJXODWRU Khd 287 Q [ Q) Q [ Q) *3,2V *3,2V [ ) [ ) ,1 /E 9'' Q [ 9'' Q [ 966 Q [ 966 /HYH
Electrical characteristics STM32L486xx below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 108/258 Downloaded from Arrow.com.
STM32L486xx 6.1.7 Electrical characteristics Current consumption measurement Figure 17. Current consumption measurement scheme with and without external SMPS power supply ,''B86% ,''B86% 9''86% 9''86% ,''B9%$7 ,''B9%$7 9%$7 9%$7 ,'' ,'' ,''$ 6036 9'' 9'' 9'' 9'',2 9'',2 ,''$ 9''$ 9''$ 06Y 9 6.
Electrical characteristics STM32L486xx Table 20. Voltage characteristics(1) (continued) Symbol |∆VDDx| |VSSx-VSS| Ratings Min Max Unit Variations between different VDDX power pins of the same domain - 50 mV Variations between all the different ground pins(5) - 50 mV 1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected.
STM32L486xx Electrical characteristics Table 22. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature DocID025977 Rev 6 Value Unit –65 to +150 °C 150 °C 111/258 232 Downloaded from Arrow.com.
Electrical characteristics STM32L486xx 6.3 Operating conditions 6.3.1 General operating conditions Table 23. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 80 fPCLK1 Internal APB1 clock frequency - 0 80 fPCLK2 Internal APB2 clock frequency - 0 80 VDD Standard operating voltage - VDD12 Standard operating voltage VDDIO2 PG[15:2] I/Os supply voltage VDDA Analog supply voltage 1.
STM32L486xx Electrical characteristics Table 23.
Electrical characteristics STM32L486xx Table 25. Embedded reset and power control block characteristics Symbol tRSTTEMPO(2) Typ Max Unit - 250 400 μs Rising edge 1.62 1.66 1.7 Falling edge 1.6 1.64 1.69 Rising edge 2.06 2.1 2.14 Falling edge 1.96 2 2.04 Rising edge 2.26 2.31 2.35 Falling edge 2.16 2.20 2.24 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.85 2.90 2.95 Falling edge 2.76 2.81 2.86 Rising edge 2.1 2.15 2.
STM32L486xx Electrical characteristics Table 25. Embedded reset and power control block characteristics (continued) Symbol Parameter Conditions(1) Min Typ Max Unit - 0.92 0.96 1 V VPVM2 VDDIO2 peripheral voltage monitoring VPVM3 VDDA peripheral voltage monitoring Rising edge 1.61 1.65 1.69 Falling edge 1.6 1.64 1.68 VPVM4 VDDA peripheral voltage monitoring Rising edge 1.78 1.82 1.86 Falling edge 1.77 1.81 1.
Electrical characteristics 6.3.4 STM32L486xx Embedded voltage reference The parameters given in Table 26 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. Table 26. Embedded internal voltage reference Symbol VREFINT Parameter Conditions Internal reference voltage –40 °C < TA < +130 °C Min Typ Max Unit 1.182 1.212 1.
STM32L486xx Electrical characteristics Figure 18. VREFINT versus temperature 9 0HDQ 0LQ DocID025977 Rev 6 0D[ & 06Y 9 117/258 232 Downloaded from Arrow.com.
Electrical characteristics 6.3.5 STM32L486xx Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 17: Current consumption measurement scheme with and without external SMPS power supply.
Downloaded from Arrow.com. DocID025977 Rev 6 0.14 10.2 9.24 8.25 6.28 4.24 3.21 2.19 272 154 78 42 100 kHz 80 MHz 72 MHz 64 MHz Range 1 48 MHz 32 MHz 24 MHz 16 MHz 2 MHz 1 MHz 400 kHz 100 kHz 1. Guaranteed by characterization results, unless otherwise specified. 0.23 0.34 2 MHz 0.98 8 MHz 0.55 1.83 16 MHz 4 MHz 2.88 26 MHz 73 108 184 303 2.24 3.27 4.30 6.35 8.32 9.31 10.3 0.17 0.26 0.37 0.59 1.02 1.87 2.
/258 Downloaded from Arrow.com. DocID025977 Rev 6 Supply current in Run mode IDD_ALL(Run) fHCLK = fHSE up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable - Conditions(1) 25 °C 3.67 3.32 2.97 2.26 1.52 1.15 0.79 0.42 0.24 0.15 0.10 0.06 fHCLK 80 MHz 72 MHz 64 MHz 48 MHz 32 MHz 24 MHz 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 100 kHz 0.07 0.11 0.16 0.25 0.44 0.81 1.18 1.55 2.28 2.99 3.35 3.70 55 °C 0.12 0.16 0.20 0.30 0.48 0.85 1.22 1.60 2.34 3.04 3.40 3.
Downloaded from Arrow.com. Supply current in fHCLK = fMSI Low-power all peripherals disable run IDD_ALL (Run) IDD_ALL (LPRun) DocID025977 Rev 6 4.16 2.93 358 197 97 47 24 MHz 16 MHz 2 MHz 1 MHz 400 kHz 100 kHz 1. Guaranteed by characterization results, unless otherwise specified. 7.64 5.49 32 MHz 9.06 10.0 80 MHz 8.96 0.14 100 kHz 64 MHz 0.27 1 MHz 72 MHz 0.42 2 MHz 1.26 8 MHz 0.71 2.24 16 MHz 4 MHz 3.15 26 MHz 77 126 230 392 2.99 4.22 5.57 7.72 9.04 9.13 10.1 0.17 0.
/258 Downloaded from Arrow.com. DocID025977 Rev 6 Supply current in Run mode IDD_ALL(Run) fHCLK = fHSE up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable - Conditions(1) 25 °C 3.59 3.26 3.22 2.75 1.97 1.50 1.05 0.54 0.31 0.18 0.12 0.06 fHCLK 80 MHz 72 MHz 64 MHz 48 MHz 32 MHz 24 MHz 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 100 kHz 0.07 0.13 0.19 0.32 0.56 1.07 1.52 2.00 2.78 3.25 3.28 3.63 55 °C 0.12 0.17 0.24 0.37 0.60 1.13 1.57 2.06 2.84 3.31 3.34 3.
Downloaded from Arrow.com. fHCLK = fMSI all peripherals disable FLASH in power-down Supply current in low-power run mode DocID025977 Rev 6 Range 1 26 100 kHz 242 2 MHz 61 2.18 16 MHz 400 kHz 3.20 24 MHz 130 4.22 32 MHz 1 MHz 6.26 8.25 64 MHz 48 MHz 9.25 10.2 80 MHz 72 MHz 0.22 0.12 1 MHz 100 kHz 0.33 2 MHz 0.97 0.54 8 MHz 4 MHz 2.88 1.83 26 MHz 16 MHz 25 °C fHCLK 1. Guaranteed by characterization results, unless otherwise specified.
/258 Downloaded from Arrow.com. Parameter DocID025977 Rev 6 fHCLK = fHSE up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable - Conditions(1) 3.67 3.33 2.97 2.25 1.52 1.15 0.78 0.42 0.23 0.14 0.09 0.05 80 MHz 72 MHz 64 MHz 48 MHz 32 MHz 24 MHz 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 100 kHz 0.06 0.11 0.16 0.25 0.43 0.80 1.17 1.54 2.28 2.99 3.35 3.70 25 °C 55 °C fHCLK 0.11 0.15 0.20 0.29 0.48 0.84 1.22 1.59 2.33 3.04 3.40 3.77 85 °C TYP 0.18 0.22 0.
STM32L486xx Electrical characteristics Table 33. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) Conditions Symbol Parameter Range 2 fHCLK = 26 MHz Code 25 °C Reduced code(1) 2.9 111 Coremark 3.1 118 Dhrystone 2.1 3.1 Fibonacci 2.9 112 2.8 108 Reduced code 10.2 127 Coremark 10.9 136 Dhrystone 2.1 11.0 Fibonacci 10.5 131 9.9 124 Reduced code 272 136 Coremark 291 145 Dhrystone 2.
Electrical characteristics STM32L486xx 1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V 2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31. Table 35. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS (VDD12 = 1.
STM32L486xx Electrical characteristics Table 37. Typical current consumption in Run modes, with different codes running from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) Conditions(1) IDD_ALL (Run) Parameter Supply current in Run mode Voltage scaling - fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable fHCLK = 80 MHz fHCLK = 26 MHz Symbol TYP Code 25 °C Reduced code(2) 1.34 TYP Unit Unit 25 °C 51 Coremark 1.
Electrical characteristics STM32L486xx Table 39.
STM32L486xx Electrical characteristics Table 41. Typical current consumption in Run mode, with different codes running from SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V) Conditions(1) IDD_ALL (Run) Parameter Supply current in Run mode Voltage scaling fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable fHCLK = 26 MHz Symbol TYP TYP Unit Code 25 °C Reduced code(2) 1.14 44 Coremark 1.14 44 Dhrystone 2.1 1.14 Fibonacci 1.
/258 Downloaded from Arrow.com. DocID025977 Rev 6 IDD_ALL (Sleep) 0.18 0.15 0.12 2.96 2.69 2.41 1.88 1.30 1.01 0.71 96 65 43 33 1 MHz 100 kHz 80 MHz 72 MHz 64 MHz Range 1 48 MHz 32 MHz 24 MHz 16 MHz 2 MHz 1 MHz 400 kHz 100 kHz 8 MHz 2 MHz 0.61 0.36 16 MHz 0.24 0.92 26 MHz 63 73 94 126 0.75 1.05 1.35 1.93 2.45 2.73 3.00 0.14 0.17 0.20 0.27 0.40 0.65 0.96 25 °C 55 °C fHCLK 4 MHz Range 2 Voltage scaling 1. Guaranteed by characterization results, unless otherwise specified.
Downloaded from Arrow.com. Supply current in sleep mode, IDD_ALL(Sleep) fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable - Conditions(1) 25 °C 1.06 0.97 0.87 0.68 0.47 0.36 0.26 0.16 0.10 0.08 0.06 0.05 fHCLK 80 MHz 72 MHz 64 MHz 48 MHz 32 MHz 24 MHz 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 100 kHz 0.06 0.07 0.09 0.12 0.17 0.27 0.38 0.49 0.69 0.88 0.98 1.08 55 °C 0.10 0.12 0.13 0.16 0.22 0.31 0.42 0.53 0.74 0.93 1.02 1.13 85 °C TYP 0.18 0.
/258 Downloaded from Arrow.com. IDD_ALL (Stop 2) Supply current in Stop 2 mode, RTC enabled Supply current in Stop 2 mode, RTC disabled IDD_ALL (Stop 2 with RTC) Parameter Symbol DocID025977 Rev 6 4.9 2.04 1.43 1.54 1.67 1.87 1.8 V 2.4 V 3V 3.6 V 4.57 4.29 4.11 3.99 4.55 RTC clocked by LSE quartz(4) in low drive mode, LCD disabled 4.33 1.79 4.13 4.65 4.43 4.32 4.07 4.65 4.37 4.22 4.04 4.47 4.24 4.07 3.98 4.11 3.97 3.86 1.63 1.5 1.69 3V 1.8 V 1.62 2.4 V 1.86 1.
Downloaded from Arrow.com. Parameter 3V 3V 3V Wakeup clock is MSI = 4 MHz, voltage Range 2. See (5). Wakeup clock is HSI16 = 16 MHz, voltage Range 1. See (5). VDD Wakeup clock is MSI = 48 MHz, voltage Range 1. See (5). - Conditions 2.1 2.24 1.9 - - - 25 °C 55 °C - - - 85 °C TYP - - - - - - 105 °C 125 °C 25 °C 55 °C 5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
/258 Downloaded from Arrow.com. Supply current in Stop 1 mode, RTC disabled IDD_ALL (Stop 1) RTC clocked by LSI - - - DocID025977 Rev 6 RTC clocked by LSE quartz(3) in low drive mode LCD disabled LCD disabled LCD enabled(2) LCD disabled LCD enabled(2) clocked by LSI LCD disabled - Conditions Supply current IDD_ALL in stop 1 (Stop 1 with mode, RTC) RTC enabled RTC clocked by LSE bypassed at 32768 Hz Parameter Symbol 24.9 25.3 25.7 7.14 7.31 7.41 6.91 7.04 2.4 V 3V 3.6 V 1.8 V 2.
Downloaded from Arrow.com. Parameter - Wakeup clock MSI = 48 MHz, voltage Range 1. See (4). - Conditions MAX(1) 1.7 1.62 3V 1.47 - - - - - - - - - - - - 3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
/258 Downloaded from Arrow.com. Supply current in Stop 0 mode, RTC disabled IDD_ALL (Stop 0) 108 110 111 113 1.8 V 2.4 V 3V 3.6 V 2. Guaranteed by test in production. 137 135 134 132 25 °C 55 °C VDD Conditions 1. Guaranteed by characterization results, unless otherwise specified. Parameter Symbol 222 220 219 217 85 °C TYP 363 360 358 356 642 637 634 631 166 161 158 153 105 °C 125 °C 25 °C Table 47.
Downloaded from Arrow.com. IDD_ALL (Standby) IDD_ALL (Standby with RTC) Supply current in Standby mode (backup registers retained), RTC disabled Supply current in Standby mode (backup registers retained), RTC enabled Parameter Symbol DocID025977 Rev 6 114 138 1.8 V 2.4 V - 198 317 391 3.6 V 1.8 V 2.4 V - 671 853 396 2.4 V 796 961 416 514 652 821 1.8 V 2.4 V RTC clocked by LSE quartz (3) in low drive mode 3 V 3.6 V 1226 640 1111 528 710 3V 527 289 - 1.8 V 663 3V - 885 557 2.
/258 Downloaded from Arrow.com. Supply current to be added in Standby mode when SRAM2 is retained Supply current during wakeup from Standby mode Parameter Wakeup clock is MSI = 4 MHz. See (5). - - Conditions 236 235 3V 3.
Downloaded from Arrow.com. Supply current in Shutdown mode (backup registers retained) RTC enabled IDD_ALL (Shutdown with RTC) Wakeup clock is MSI = 4 MHz. See (3). RTC clocked by LSE quartz (2) in low drive mode RTC clocked by LSE bypassed at 32768 Hz - Conditions 729 3.
/258 Downloaded from Arrow.com. RTC disabled - Conditions RTC enabled and clocked by LSE quartz(2) RTC enabled and Backup domain clocked by LSE supply current bypassed at 32768 Hz Parameter 388 494 630 3V 3.6 V 302 1.8 V 2.4 V 508 3.6 V 183 1.8 V 376 10 3.6 V 268 6 3V 3V 5.27 2.4 V 2.
STM32L486xx Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 70: I/O static characteristics.
Electrical characteristics STM32L486xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 51.
STM32L486xx Electrical characteristics Table 51. Peripheral current consumption (continued) Range 1 Range 2 Low-power run and sleep SRAM2 1.6 1.4 1.6 TSC 1.8 1.4 1.6 118.5 77.3 87.6 AHB to APB1 bridge 0.9 0.7 0.9 CAN1 4.6 4.0 4.4 DAC1 2.4 1.9 2.2 I2C1 independent clock domain 3.7 3.1 3.2 I2C1 APB clock domain 1.3 1.1 1.5 I2C2 independent clock domain 3.7 3.0 3.2 I2C2 APB clock domain 1.4 1.1 1.5 I2C3 independent clock domain 2.9 2.3 2.
Electrical characteristics STM32L486xx Table 51. Peripheral current consumption (continued) Range 1 Range 2 Low-power run and sleep USART2 independent clock domain 4.1 3.6 3.8 USART2 APB clock domain 1.4 1.1 1.5 USART3 independent clock domain 4.7 4.1 4.2 USART3 APB clock domain 1.5 1.3 1.7 UART4 independent clock domain 3.9 3.2 3.5 UART4 APB clock domain 1.5 1.3 1.6 UART5 independent clock domain 3.9 3.2 3.5 UART5 APB clock domain 1.3 1.2 1.4 WWDG 0.5 0.5 0.
STM32L486xx Electrical characteristics 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA). 2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register.
Electrical characteristics STM32L486xx Table 52.
STM32L486xx Electrical characteristics Table 53. Regulator modes transition times(1) Symbol Parameter tWULPRUN tVOST Conditions Typ Max Wakeup time from Low-power run mode to Code run with MSI 2 MHz Run mode(2) 5 7 Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2(3) 20 40 Typ Max Stop mode 0 - 1.7 Stop mode 1/2 - 8.5 Unit µs Code run with MSI 24 MHz 1. Guaranteed by characterization results. 2. Time until REGLPF flag is cleared in PWR_SR2. 3.
Electrical characteristics STM32L486xx Figure 19. High-speed external clock source AC timing diagram WZ +6(+ 9+6(+ 9+6(/ WU +6( WI +6( W WZ +6(/ 7+6( 06 9 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 20. Table 56.
STM32L486xx Electrical characteristics High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 57.
Electrical characteristics Note: STM32L486xx For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 21. Typical application with an 8 MHz crystal 5HVRQDWRU ZLWK LQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7 I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 06 9 1. REXT value depends on the crystal characteristics.
STM32L486xx Electrical characteristics 1. Guaranteed by design. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached.
Electrical characteristics 6.3.8 STM32L486xx Internal clock source characteristics The parameters given in Table 59 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI16) RC oscillator Table 59.
STM32L486xx Electrical characteristics Figure 23. HSI16 frequency versus temperature 0+] 0HDQ PLQ & PD[ 06Y 9 DocID025977 Rev 6 153/258 232 Downloaded from Arrow.com.
Electrical characteristics STM32L486xx Multi-speed internal (MSI) RC oscillator Table 60. MSI oscillator characteristics(1) Symbol Parameter Conditions Min Typ Max Range 0 99 100 101 Range 1 198 200 202 Range 2 396 400 404 Range 3 792 800 808 Range 4 0.99 1 1.01 Range 5 1.98 2 2.02 Range 6 3.96 4 4.04 Range 7 7.92 8 8.08 Range 8 15.8 16 16.16 Range 9 23.8 24 24.4 Range 10 31.7 32 32.32 Range 11 47.5 48 48.48 Range 0 - 98.304 - Range 1 - 196.
STM32L486xx Electrical characteristics Table 60. MSI oscillator characteristics(1) (continued) Symbol Parameter Conditions Min Typ VDD=1.62 V to 3.6 V -1.2 - VDD=2.4 V to 3.6 V -0.5 - VDD=1.62 V to 3.6 V -2.5 - VDD=2.4 V to 3.6 V -0.8 - VDD=1.62 V to 3.6 V -5 - VDD=2.4 V to 3.6 V -1.
Electrical characteristics STM32L486xx Table 60. MSI oscillator characteristics(1) (continued) Symbol IDD(MSI)(6) Parameter MSI oscillator power consumption Conditions MSI and PLL mode Min Typ Max Range 0 - - 0.6 1 Range 1 - - 0.8 1.2 Range 2 - - 1.2 1.7 Range 3 - - 1.9 2.5 Range 4 - - 4.7 6 Range 5 - - 6.5 9 Range 6 - - 11 15 Range 7 - - 18.5 25 Range 8 - - 62 80 Range 9 - - 85 110 Range 10 - - 110 130 Range 11 - - 155 190 Unit µA 1.
STM32L486xx Electrical characteristics Figure 24. Typical current consumption versus MSI frequency Low-speed internal (LSI) RC oscillator Table 61. LSI oscillator characteristics(1) Symbol fLSI tSU(LSI)(2) tSTAB(LSI)(2) IDD(LSI)(2) Parameter LSI Frequency Conditions Min Typ Max VDD = 3.0 V, TA = 30 °C 31.04 - 32.96 VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 29.
Electrical characteristics STM32L486xx Table 62. PLL, PLLSAI1, PLLSAI2 characteristics(1) Symbol fPLL_IN Parameter Conditions Min Typ Max Unit PLL input clock(2) - 4 - 16 MHz PLL input clock duty cycle - 45 - 55 % Voltage scaling Range 1 2.0645 - 80 Voltage scaling Range 2 2.
STM32L486xx Electrical characteristics Table 63. Flash memory characteristics(1) (continued) Symbol IDD Parameter Conditions Average consumption from VDD Maximum current (peak) Typ Max Write mode 3.4 - Erase mode 3.4 - Write mode 7 (for 2 μs) - Erase mode 7 (for 41 μs) - Unit mA 1. Guaranteed by design. Table 64.
Electrical characteristics 6.3.11 STM32L486xx EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs.
STM32L486xx Electrical characteristics Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electrical characteristics STM32L486xx Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 68. Electrical sensitivities Symbol LU Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A(1) 1.
STM32L486xx 6.3.14 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 70 are derived from tests performed under the conditions summarized in Table 23: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). Table 70. I/O static characteristics Symbol VIL (1) VIH (1) Parameter Conditions Typ Max Unit I/O input low level voltage except BOOT0 1.62 V
Electrical characteristics STM32L486xx Table 70. I/O static characteristics (continued) Symbol Parameter FT_xx input leakage current(3)(5) Conditions Min Typ Max VIN ≤ Max(VDDXXX)(6)(7) - - ±100 Max(VDDXXX) ≤ VIN ≤ Max(VDDXXX)+1 V(6)(7) - - 650 Max(VDDXXX)+1 V < VIN ≤ 5.5 V(6)(7) - - 200 - - ±150 - - 2500(3) Max(VDDXXX)+1 V < VIN ≤ 5.5 V(6)(7) - - 250 VIN ≤ Max(VDDXXX)(6) - - ±150 Max(VDDXXX) ≤ VIN < 3.
STM32L486xx Electrical characteristics All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 25 for standard I/Os, and in Figure 25 for 5 V tolerant I/Os. Figure 25.
Electrical characteristics STM32L486xx Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 23: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified). Table 71. Output voltage characteristics(1) Symbol VOL VOH Parameter Conditions Min Max - 0.4 VDDIOx-0.4 - - 0.4 2.4 - - 1.3 VDDIOx-1.
STM32L486xx Electrical characteristics Table 72. I/O AC characteristics(1)(2) Speed Symbol Fmax Parameter Maximum frequency 00 Tr/Tf Fmax Output rise and fall time Maximum frequency 01 Tr/Tf Output rise and fall time Conditions Min Max C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 5 C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 1 C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 0.1 C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 10 C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 1.5 C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 0.1 C=50 pF, 2.7 V≤VDDIOx≤3.
Electrical characteristics STM32L486xx Table 72. I/O AC characteristics(1)(2) (continued) Speed Symbol Fmax Parameter Maximum frequency 10 Tr/Tf Fmax Output rise and fall time Maximum frequency 11 Tr/Tf Fm+ Fmax Tf Output rise and fall time Maximum frequency Output fall time (4) Conditions Min Max C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 50 C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 25 C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 5 C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 100(3) C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 37.
STM32L486xx Electrical characteristics Figure 26. I/O AC characteristics definition(1) W I ,2 RXW W U ,2 RXW 7 0D[LPXP IUHTXHQF\ LV DFKLHYHG LI W W U I 7 DQG LI WKH GXW\ F\FOH LV ZKHQ ORDGHG E\ WKH VSHFLILHG FDSDFLWDQFH 06 9 1. Refer to Table 72: I/O AC characteristics. 6.3.15 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU.
Electrical characteristics STM32L486xx Figure 27. Recommended NRST pin protection ([WHUQDO UHVHW FLUFXLW 9'' 1567 538 ,QWHUQDO UHVHW )LOWHU ) 06 9 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 73: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 3.
STM32L486xx 6.3.18 Electrical characteristics Analog-to-Digital converter characteristics Unless otherwise specified, the parameters given in Table 76 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 23: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 76.
Electrical characteristics STM32L486xx Table 76. ADC characteristics(1) (2) (continued) Symbol Parameter Conditions Min Typ Max 2.5 3 3.5 - - 3.0 - - 3.25 - - 3.125 0.03125 - 8.00625 µs - 2.5 - 640.5 1/fADC - - - 20 µs 0.1875 - 8.
STM32L486xx Electrical characteristics Table 77. Maximum ADC RAIN(1)(2) Resolution 12 bits 10 bits 8 bits 6 bits Sampling cycle @80 MHz Sampling time [ns] @80 MHz 2.5 RAIN max (Ω) Fast channels(3) Slow channels(4) 31.25 100 N/A 6.5 81.25 330 100 12.5 156.25 680 470 24.5 306.25 1500 1200 47.5 593.75 2200 1800 92.5 1156.25 4700 3900 247.5 3093.75 12000 10000 640.5 8006.75 39000 33000 2.5 31.25 120 N/A 6.5 81.25 390 180 12.5 156.25 820 560 24.5 306.
Electrical characteristics STM32L486xx 2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V. 3. Fast channels are: PC0, PC1, PC2, PC3, PA0. 4. Slow channels are: all ADC inputs except the fast channels. 174/258 Downloaded from Arrow.com.
STM32L486xx Electrical characteristics Table 78. ADC accuracy - limited test conditions 1(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Conditions(4) Single ended Differential Single ended Offset error Differential Single ended EG Gain error Differential ED EL Differential linearity ADC clock frequency ≤ error 80 MHz, Sampling rate ≤ 5.
Electrical characteristics STM32L486xx Table 78. ADC accuracy - limited test conditions 1(1)(2)(3) (continued) Symbol THD Conditions(4) Parameter Total harmonic distortion ADC clock frequency ≤ Single 80 MHz, ended Sampling rate ≤ 5.33 Msps, VDDA = VREF+ = 3 V, Differential TA = 25 °C Min Typ Max Unit Fast channel (max speed) - -74 -73 Slow channel (max speed) - -74 -73 Fast channel (max speed) - -79 -76 Slow channel (max speed) - -79 -76 dB 1. Guaranteed by design. 2.
STM32L486xx Electrical characteristics Table 79. ADC accuracy - limited test conditions 2(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Conditions(4) Single ended Differential Single ended Offset error Differential Single ended EG Gain error Differential ED EL Differential linearity error ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.
Electrical characteristics STM32L486xx Table 79. ADC accuracy - limited test conditions 2(1)(2)(3) (continued) Symbol THD Conditions(4) Parameter Total harmonic distortion Fast channel (max speed) Single ADC clock frequency ≤ ended Slow channel (max speed) 80 MHz, Sampling rate ≤ 5.33 Msps, Fast channel (max speed) Differential 2 V ≤ VDDA Slow channel (max speed) Min Typ Max Unit - -74 -65 - -74 -67 - -79 -70 - -79 -71 dB 1. Guaranteed by design. 2.
STM32L486xx Electrical characteristics Table 80. ADC accuracy - limited test conditions 3(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Conditions(4) Single ended Differential Single ended Offset error Differential Single ended EG Gain error Differential ED EL Differential linearity ADC clock frequency ≤ error 80 MHz, Sampling rate ≤ 5.33 Msps, 1.65 V ≤ VDDA = VREF+ ≤ 3.
Electrical characteristics STM32L486xx Table 80. ADC accuracy - limited test conditions 3(1)(2)(3) (continued) Symbol THD Conditions(4) Parameter Total harmonic distortion ADC clock frequency ≤ Single 80 MHz, ended Sampling rate ≤ 5.33 Msps, 1.65 V ≤ VDDA = VREF+ ≤ Differential 3.6 V, Voltage scaling Range 1 Min Typ Max Unit Fast channel (max speed) - -69 -67 Slow channel (max speed) - -71 -67 Fast channel (max speed) - -72 -71 Slow channel (max speed) - -72 -71 dB 1.
STM32L486xx Electrical characteristics Table 81. ADC accuracy - limited test conditions 4(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Conditions(4) Single ended Differential Single ended Offset error Differential Single ended EG Gain error Differential ED EL Differential linearity ADC clock frequency ≤ error 26 MHz, 1.65 V ≤ VDDA = VREF+ ≤ 3.
Electrical characteristics STM32L486xx Table 81. ADC accuracy - limited test conditions 4(1)(2)(3) (continued) Symbol THD Conditions(4) Parameter Total harmonic distortion ADC clock frequency ≤ 26 MHz, 1.65 V ≤ VDDA = VREF+ ≤ 3.6 V, Voltage scaling Range 2 Single ended Differential Min Typ Max Unit Fast channel (max speed) - -71 -69 Slow channel (max speed) - -71 -69 Fast channel (max speed) - -73 -72 Slow channel (max speed) - -73 -72 dB 1. Guaranteed by design. 2.
STM32L486xx Electrical characteristics Figure 28. ADC accuracy characteristics 966$ (* ([DPSOH RI DQ DFWXDO WUDQVIHU FXUYH 7KH LGHDO WUDQVIHU FXUYH (QG SRLQW FRUUHODWLRQ OLQH (7 7RWDO 8QDMXVWHG (UURU PD[LPXP GHYLDWLRQ EHWZHHQ WKH DFWXDO DQG LGHDO WUDQVIHU FXUYHV (2 2IIVHW (UURU PD[LPXP GHYLDWLRQ EHWZHHQ WKH ILUVW DFWXDO WUDQVLWLRQ DQG WKH ILUVW LGHDO RQH (* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO WUDQVLWLRQ DQG WKH ODVW DFWXDO RQH (' 'LIIHUHQWLDO /LQHDULW\
Electrical characteristics 6.3.19 STM32L486xx Digital-to-Analog converter characteristics Table 82. DAC characteristics(1) Symbol Parameter Analog supply voltage for DAC ON VDDA VREF+ Positive reference voltage Conditions Min Typ DAC output buffer OFF, DAC_OUT pin not connected (internal connection only) 1.71 - Other modes 1.80 - DAC output buffer OFF, DAC_OUT pin not connected (internal connection only) 1.71 - Other modes 1.
STM32L486xx Electrical characteristics Table 82.
Electrical characteristics STM32L486xx Table 82.
STM32L486xx Electrical characteristics Table 83. DAC accuracy(1) .
Electrical characteristics STM32L486xx Table 83. DAC accuracy(1) (continued) Symbol Parameter SINAD Signal-to-noise and distortion ratio ENOB Effective number of bits Conditions Min Typ Max DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz - 70.4 - DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz - 71 - DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz - 11.4 - DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz - Unit dB bits 11.5 - 1. Guaranteed by design. 2.
STM32L486xx 6.3.20 Electrical characteristics Voltage reference buffer characteristics Table 84. VREFBUF characteristics(1) Symbol Parameter Conditions Normal mode VDDA VREFBUF_ OUT Analog supply voltage Voltage reference output Degraded mode(2) Normal mode Degraded mode(2) Min Typ Max VRS = 0 2.4 - 3.6 VRS = 1 2.8 - 3.6 VRS = 0 1.65 - 2.4 VRS = 1 1.65 - 2.8 2.048 2.049(3) (3) VRS = 0 2.046 VRS = 1 2.498(3) 2.5 2.
Electrical characteristics STM32L486xx Table 84. VREFBUF characteristics(1) (continued) Symbol Parameter VREFBUF IDDA(VREF consumption BUF) from VDDA Conditions Min Typ Max Iload = 0 µA - 16 25 Iload = 500 µA - 18 30 Iload = 4 mA - 35 50 Unit µA 1. Guaranteed by design, unless otherwise specified. 2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (VDDA drop voltage). 3. Guaranteed by test in production. 4.
STM32L486xx 6.3.21 Electrical characteristics Comparator characteristics Table 85. COMP characteristics(1) Symbol Conditions Min Typ Max Analog supply voltage - 1.62 - 3.6 Comparator input voltage range - 0 - VDDA V VBG(2) Scaler input voltage - VSC Scaler offset voltage - VDDA VIN IDDA(SCALER) Parameter VREFINT - ±5 ±10 mV BRG_EN=0 (bridge disable) - 200 300 nA BRG_EN=1 (bridge enable) - 0.8 1 µA - 100 200 µs VDDA ≥ 2.7 V - - 5 VDDA < 2.
Electrical characteristics STM32L486xx Table 85.
STM32L486xx Electrical characteristics Table 86.
Electrical characteristics STM32L486xx Table 86.
STM32L486xx Electrical characteristics Table 86.
Electrical characteristics 6.3.23 STM32L486xx Temperature sensor characteristics Table 87. TS characteristics Symbol Parameter TL(1) Min Typ Max Unit - ±1 ±2 °C 2.3 2.5 2.7 mV/°C 0.742 0.76 0.
STM32L486xx 6.3.25 Electrical characteristics LCD controller characteristics The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the VDD voltage. An external capacitor Cext must be connected to the VLCD pin to decouple this converter. Table 90. LCD controller characteristics(1) Symbol Parameter Conditions Min Typ Max VLCD LCD external voltage - - 3.6 VLCD0 LCD internal reference voltage 0 - 2.
Electrical characteristics STM32L486xx 1. Guaranteed by design. 2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected. 198/258 Downloaded from Arrow.com.
STM32L486xx 6.3.26 Electrical characteristics DFSDM characteristics Unless otherwise specified, the parameters given in Table 91 for DFSDM are derived from tests performed under the ambient temperature, fAPB2 frequency and VDD supply voltage conditions summarized in Table 23: General operating conditions. • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 ₓ VDD Refer to Section 6.3.
Electrical characteristics STM32L486xx ')6'0B &.,1,1\ ')6'0B'$7$,1\ 63, WLPLQJ 63,&.6(/ Figure 16: DFSDM timing diagram WZO WZK WU WI 63,&.6(/ WVX WK 6,73 WVX WK 6,73 ')6'0B&.287 63,&.6(/ WZO WU WZK WI 63,&.6(/ ')6'0B'$7$,1\ WVX ')6'0B'$7$,1\ 0DQFKHVWHU WLPLQJ 63, WLPLQJ 63,&.6(/ 63,&.6(/ WK 6,73 WVX WK 6,73 6,73 6,73 5HFRYHUHG FORFN 5HFRYHUHG GDWD 06Y 9 6.3.
STM32L486xx Electrical characteristics Table 92. TIMx(1) characteristics Symbol tres(TIM) Parameter Timer resolution time Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 80 MHz 12.5 - ns 0 fTIMxCLK/2 MHz 0 40 MHz TIMx (except TIM2 and TIM5) - 16 TIM2 and TIM5 - 32 - 1 65536 tTIMxCLK fTIMxCLK = 80 MHz 0.0125 819.2 µs - - 65536 × 65536 tTIMxCLK fTIMxCLK = 80 MHz - 53.
Electrical characteristics 6.3.28 STM32L486xx Communication interfaces characteristics I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
STM32L486xx Electrical characteristics SPI characteristics Unless otherwise specified, the parameters given in Table 96 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 23: General operating conditions. • Output speed is set to OSPEEDRy[1:0] = 11 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 ₓ VDD Refer to Section 6.3.
Electrical characteristics STM32L486xx Table 96. SPI characteristics(1) (continued) Symbol Parameter Min Typ Max Slave mode 2.7 < VDD < 3.6 V Voltage Range 1 - 12.5 19 Slave mode 1.71 < VDD < 3.6 V Voltage Range 1 - 12.5 30 Slave mode 1.71 < VDD < 3.6 V Voltage Range 2 - 12.5 33 Slave mode 1.08 < VDDIO2 < 1.32 V(3) - 25 62.5 tv(MO) Master mode - 2.5 12.
STM32L486xx Electrical characteristics Figure 32. SPI timing diagram - slave mode and CPHA = 1 166 LQSXW 6&. LQSXW WF 6&. WVX 166 WZ 6&.+ WD 62 WZ 6&./ WI 6&. WK 166 &3+$ &32/ &3+$ &32/ WY 62 WK 62 )LUVW ELW 287 0,62 RXWSXW WVX 6, 1H[W ELWV 287 WU 6&. WGLV 62 /DVW ELW 287 WK 6, 026, LQSXW )LUVW ELW ,1 1H[W ELWV ,1 /DVW ELW ,1 06Y 9 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. Figure 33. SPI timing diagram - master mode +LJK 166 LQSXW 6&.
Electrical characteristics STM32L486xx Quad SPI characteristics Unless otherwise specified, the parameters given in Table 97 and Table 98 for Quad SPI are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 23: General operating conditions, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 11 • Capacitive load C = 15 or 20 pF • Measurement points are done at CMOS levels: 0.5 ₓ VDD Refer to Section 6.3.
STM32L486xx Electrical characteristics Table 98. QUADSPI characteristics in DDR mode(1) Symbol Parameter FCK 1/t(CK) Quad SPI clock frequency tw(CKH) Quad SPI clock high and low time tw(CKL) tsf(IN);tsr(IN) Data input setup time thf(IN); thr(IN) Data input hold time tvf(OUT);tvr(OUT) Data output valid time thf(OUT); thr(OUT) Data output hold time Conditions Min Typ Max Unit 1.71 < VDD < 3.6 V, CLOAD = 20 pF Voltage Range 1 - - 40 2 < VDD < 3.
Electrical characteristics STM32L486xx SAI characteristics Unless otherwise specified, the parameters given in Table 99 for SAI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized inTable 23: General operating conditions, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 ₓ VDD Refer to Section 6.3.
STM32L486xx Electrical characteristics Table 99. SAI characteristics(1) (continued) Symbol tv(SD_B_ST) th(SD_B_ST) tv(SD_A_MT) th(SD_A_MT) Parameter Conditions Data output valid time Data output hold time Data output valid time Data output hold time Min Max Slave transmitter (after enable edge) 2.7 ≤ VDD ≤ 3.6 - 22 Slave transmitter (after enable edge) 1.71 ≤ VDD ≤ 3.6 - 34 Slave transmitter (after enable edge) 10 - Master transmitter (after enable edge) 2.7 ≤ VDD ≤ 3.
Electrical characteristics STM32L486xx Figure 37.
STM32L486xx Electrical characteristics Table 100. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V(1) (continued) Symbol Parameter Conditions Min Typ Max Unit CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fPP = 50 MHz - 4.5 5 ns tOHD Output hold default time SD fPP = 50 MHz 0 - - ns 1. Guaranteed by characterization results. Table 101. eMMC dynamic characteristics, VDD = 1.71 V to 1.
Electrical characteristics STM32L486xx Figure 39. SD default mode #+ T/6$ T/($ $ #-$ OUTPUT AI USB OTG full speed (FS) characteristics The STM32L486xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation). Table 102. USB OTG DC electrical characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit VDDUSB USB OTG full speed transceiver operating voltage - 3.0(2) - 3.
STM32L486xx Electrical characteristics Figure 40. USB OTG timings – definition of data signal rise and fall time &URVV RYHU SRLQWV 'LIIHUHQWLDO GDWD OLQHV 9&56 966 WI WU DL E Table 103.
Electrical characteristics STM32L486xx Table 104. USB BCD DC electrical characteristics(1) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit VDAT_REF Data detect voltage - 0.25 - 0.4 V VDP_SRC D+ source voltage - 0.5 - 0.7 V VDM_SRC D- source voltage - 0.5 - 0.7 V IDP_SINK D+ sink current - 25 - 175 μA IDM_SINK D- sink current - 25 - 175 μA 1. Guaranteed by design. CAN (controller area network) interface Refer to Section 6.3.
STM32L486xx 6.3.29 Electrical characteristics FSMC characteristics Unless otherwise specified, the parameters given in Table 105 to Table 118 for the FMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 23, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 11 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.
Electrical characteristics STM32L486xx Figure 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms TW .% &-#?.% TV ./%?.% T W ./% T H .%?./% &-#?./% &-#?.7% TV !?.% &-#?!; = T H !?./% !DDRESS TV ",?.% T H ",?./% &-#?.",; = T H $ATA?.% T SU $ATA?./% TH $ATA?./% T SU $ATA?.% $ATA &-#?$; = T V .!$6?.% TW .!$6 &-#?.!$6 &-#?.7!)4 TH .%?.7!)4 TSU .7!)4?.% -3 6 216/258 Downloaded from Arrow.com.
STM32L486xx Electrical characteristics Table 105. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Min Max 2THCLK-0.5 2THCLK+0.5 0 1 2THCLK-0.5 2THCLK+1 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 3.
Electrical characteristics STM32L486xx Figure 42. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms TW .% &-#?.%X &-#?./% TV .7%?.% TW .7% T H .%?.7% &-#?.7% TV !?.% &-#?!; = TH !?.7% !DDRESS TV ",?.% &-#?.",; = TH ",?.7% .", TV $ATA?.% TH $ATA?.7% $ATA &-#?$; = T V .!$6?.% &-#?.!$6 TW .!$6 &-#?.7!)4 TH .%?.7!)4 TSU .7!)4?.% -3 6 Table 107.
STM32L486xx Electrical characteristics Table 108. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings(1)(2) Symbol Parameter Min Max FMC_NE low time 8THCLK+0.5 8THCLK+0.5 FMC_NWE low time 6THCLK-0.5 6THCLK+0.5 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK+2 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+2 - tw(NE) tw(NWE) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Figure 43.
Electrical characteristics STM32L486xx Table 109. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) Parameter Min Max FMC_NE low time 3THCLK-0.5 3THCLK+2 FMC_NEx low to FMC_NOE low 2THCLK-0.5 2THCLK+0.5 FMC_NOE low time THCLK+0.5 THCLK+1 FMC_NOE high to FMC_NE high hold time 0 - FMC_NEx low to FMC_A valid - 3 0 1 THCLK-0.
STM32L486xx Electrical characteristics Figure 44. Asynchronous multiplexed PSRAM/NOR write waveforms TW .% &-#? .%X &-#?./% TV .7%?.% TW .7% T H .%?.7% &-#?.7% TH !?.7% TV !?.% &-#? !; = !DDRESS TV ",?.% &-#? .",; = .", T V !?.% &-#? !$; = TH ",?.7% T V $ATA?.!$6 !DDRESS TH $ATA?.7% $ATA TH !$?.!$6 T V .!$6?.% TW .!$6 &-#?.!$6 &-#?.7!)4 TH .%?.7!)4 TSU .7!)4?.% -3 6 DocID025977 Rev 6 221/258 232 Downloaded from Arrow.com.
Electrical characteristics STM32L486xx Table 111. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Min Max FMC_NE low time 4THCLK-0.5 4THCLK+2 FMC_NEx low to FMC_NWE low THCLK-0.5 THCLK+1 2xTHCLK-1.5 2xTHCLK+1. 5 THCLK-0.5 - FMC_NEx low to FMC_A valid - 3 FMC_NEx low to FMC_NADV low 0 1 THCLK-0.
STM32L486xx Electrical characteristics In all timing tables, the THCLK is the HCLK clock period. Figure 45. Synchronous multiplexed NOR/PSRAM read timings "53452. TW #,+ TW #,+ &-#?#,+ $ATA LATENCY TD #,+, .%X, &-#?.%X T D #,+, .!$6, TD #,+( .%X( TD #,+, .!$6( &-#?.!$6 TD #,+, !6 TD #,+( !)6 &-#?!; = TD #,+, ./%, TD #,+( ./%( &-#?./% T D #,+, !$6 &-#?!$; = TD #,+, !$)6 TSU !$6 #,+( !$; = TH #,+( !$6 TSU !$6 #,+( $ TSU .7!)46 #,+( &-#?.7!)4 7!)4#&' B 7!)40/, B &-#?.
Electrical characteristics STM32L486xx Table 113. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol Min Max 2THCLK-1 - - 2 THCLK+0.5 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 1 - - 3.5 THCLK - - 1.5 THCLK+1 - tw(CLK) Parameter FMC_CLK period td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..
STM32L486xx Electrical characteristics Figure 46. Synchronous multiplexed PSRAM write timings WZ &/. %867851 WZ &/. )0&B&/. 'DWD ODWHQF\ WG &/./ 1([/ WG &/.+ 1([+ )0&B1([ WG &/./ 1$'9/ WG &/./ 1$'9+ )0&B1$'9 WG &/.+ $,9 WG &/./ $9 )0&B$> @ WG &/.+ 1:(+ WG &/./ 1:(/ )0&B1:( WG &/./ 'DWD WG &/./ $',9 WG &/./ 'DWD WG &/./ $'9 )0&B$'> @ )0&B1:$,7 :$,7&)* E :$,732/ E $'> @ ' WVX 1:$,79 &/.+ ' WK &/.+ 1:$,79 WG &/.
Electrical characteristics STM32L486xx Table 114. Synchronous multiplexed PSRAM write timings(1)(2) Symbol tw(CLK) Parameter FMC_CLK period 2THCLK-1 - - 2 THCLK+0.5 - FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 3.
STM32L486xx Electrical characteristics Figure 47. Synchronous non-multiplexed NOR/PSRAM read timings TW #,+ TW #,+ &-#?#,+ TD #,+, .%X, TD #,+( .%X( $ATA LATENCY &-#?.%X TD #,+, .!$6, TD #,+, .!$6( &-#?.!$6 TD #,+( !)6 TD #,+, !6 &-#?!; = TD #,+, ./%, TD #,+( ./%( &-#?./% TSU $6 #,+( TH #,+( $6 TSU $6 #,+( &-#?$; = TH #,+( $6 $ TSU .7!)46 #,+( &-#?.7!)4 7!)4#&' B 7!)40/, B $ TH #,+( .7!)46 TSU .7!)46 #,+( &-#?.7!)4 7!)4#&' B 7!)40/, B TSU .7!)46 #,+( T H #,+( .
Electrical characteristics STM32L486xx 1. CL = 30 pF. 2. Guaranteed by characterization results. Figure 48. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )0&B&/. WG &/./ 1([/ WG &/.+ 1([+ 'DWD ODWHQF\ )0&B1([ WG &/./ 1$'9/ WG &/./ 1$'9+ )0&B1$'9 WG &/.+ $,9 WG &/./ $9 )0&B$> @ WG &/.+ 1:(+ WG &/./ 1:(/ )0&B1:( WG &/./ 'DWD WG &/./ 'DWD )0&B'> @ ' ' )0&B1:$,7 :$,7&)* E :$,732/ E WVX 1:$,79 &/.+ WG &/.+ 1%/+ WK &/.
STM32L486xx Electrical characteristics Table 116. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol tw(CLK) Parameter FMC_CLK period Min Max 2THCLK-0.5 - - 2 THCLK+0.5 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 2.5 - - 5 THCLK-1 - - 2 THCLK-1 - - 4.5 1.
Electrical characteristics STM32L486xx Figure 49. NAND controller waveforms for read access )0&B1&([ $/( )0&B$ &/( )0&B$ )0&B1:( WK 12( $/( WG 1&( 12( )0&B12( 15( WVX ' 12( WK 12( ' )0&B'> @ 06Y 9 Figure 50. NAND controller waveforms for write access )0&B1&([ $/( )0&B$ &/( )0&B$ WK 1:( $/( WG 1&( 1:( )0&B1:( )0&B12( 15( WK 1:( ' WY 1:( ' )0&B'> @ 06Y 9 Figure 51.
STM32L486xx Electrical characteristics Figure 52. NAND controller waveforms for common memory write access )0&B1&([ $/( )0&B$ &/( )0&B$ WG 1&( 1:( WZ 1:( WK 12( $/( )0&B1:( )0&B12( WG ' 1:( WY 1:( ' WK 1:( ' )0&B'> @ 06Y 9 Table 117.
Electrical characteristics 6.3.30 STM32L486xx SWPMI characteristics The Single Wire Protocol Master Interface (SWPMI) and the associated SWPMI_IO transceiver are compliant with the ETSI TS 102 613 technical specification. Table 119. SWPMI electrical characteristics(1) Symbol Parameter tSWPSTART SWPMI regulator startup time tSWPBIT SWP bit duration Conditions Min Typ - - 300 VCORE voltage range 1 500 - - VCORE voltage range 2 620 - - SWP Class B 2.7 V ≤ VDD ≤ 3,3V 1.
STM32L486xx 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 LQFP144 package information Figure 53.
Package information STM32L486xx Table 120. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.8740 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.
STM32L486xx Package information Figure 54. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint DL H 1. Dimensions are expressed in millimeters. DocID025977 Rev 6 235/258 251 Downloaded from Arrow.com.
Package information STM32L486xx Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 55. LQFP144 marking (package top view) 2SWLRQDO JDWH PDUN 5HYLVLRQ FRGH 3URGXFW LGHQWLILFDWLRQ 670 / =*7 'DWH FRGH < :: 3LQ LGHQWLILHU 06Y 9 1.
STM32L486xx 7.2 Package information UFBGA132 package information Figure 56. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package outline $ EDOO LGHQWLILHU $ % ( H ( = $ = ' ' H 0 %27720 9,(: E EDOOV HHH 0 & $ % III 0 & 723 9,(: $ GGG & $ $ $ $ E 6($7,1* 3/$1( 8)%*$ B$ * B0(B9 1. Drawing is not to scale. Table 121.
Package information STM32L486xx Table 121. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - ddd - 0.080 - - 0.0031 - eee - 0.150 - - 0.0059 - fff - 0.050 - - 0.0020 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 57.
STM32L486xx Package information Device marking The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 58. UFBGA132 marking (package top view) 3URGXFW LGHQWLILFDWLRQ 670 / 4*, < :: %DOO $ LQGHQWLILHU 'DWH FRGH 5HYLVLRQ FRGH 06Y 9 1.
Package information 7.3 STM32L486xx LQFP100 package information Figure 59. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline MM C ! ! ! 3%!4).' 0,!.% # '!5'% 0,!.% $ ! + CCC # , $ , $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Table 123. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 240/258 Downloaded from Arrow.com.
STM32L486xx Package information Table 123. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc - - 0.080 - - 0.0031 1.
Package information STM32L486xx Figure 61. LQFP100 marking (package top view) 3URGXFW LGHQWLILFDWLRQ 670 / 2SWLRQDO JDWH PDUN 9*7 5HYLVLRQ FRGH 'DWH FRGH < :: 3LQ LQGHQWLILHU 06Y 9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use.
STM32L486xx 7.4 Package information WLCSP72 package information Figure 62. WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package outline EEE = H ' H H 'HWDLO $ ; < ( H * DDD $ $ $ ) %RWWRP YLHZ %XPS VLGH $ EDOO ORFDWLRQ 7RS YLHZ :DIHU EDFN VLGH 6LGH YLHZ %XPS HHH = $ E ; = ;< = T FFF 0 TGGG 0 = 6HDWLQJ SODQH 'HWDLO $ URWDWHG E\ $ 5B0(B9 1. Drawing is not to scale. Table 124. WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.
Package information STM32L486xx Table 124. WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max aaa - 0.100 - - 0.0039 - bbb - 0.100 - - 0.0039 - ccc - 0.100 - - 0.0039 - ddd - 0.050 - - 0.0020 - eee - 0.050 - - 0.0020 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3.
STM32L486xx Package information Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 64. WLCSP72 marking (package top view) %DOO $ LGHQWLILHU / -*< 3URGXFW LGHQWLILFDWLRQ 5HYLVLRQ FRGH 'DWH FRGH < :: 06Y 9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production.
Package information 7.5 STM32L486xx LQFP64 package information Figure 65. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*( 3/$1( F $ $ $ 6($7,1* 3/$1( & $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( ( E H :B0(B9 1. Drawing is not to scale. Table 126. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 246/258 Downloaded from Arrow.com.
STM32L486xx Package information Table 126. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 66.
Package information STM32L486xx Figure 67. LQFP64 marking (package top view) 5HYLVLRQ FRGH 3URGXFW LGHQWLILFDWLRQ 670 / 5*7 < :: 'DWH FRGH 3LQ LGHQWLILHU 06Y 9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use.
STM32L486xx 7.6 Package information Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 22: General operating conditions.
Package information STM32L486xx The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.
STM32L486xx Package information In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Ordering information) unless we reduce the power dissipation in order to be able to use suffix 6 parts. Refer to Figure 68 to select the required temperature range (suffix 6 or 7) according to your ambient temperature or power requirements. Figure 68. LQFP64 PD max vs.
Ordering information 8 STM32L486xx Ordering information Table 128.
STM32L486xx 9 Revision history Revision history Table 129. Document revision history Date Revision 29-May-2015 1 Initial release. 12-Jun-2015 2 Updated Table 16: STM32L486xx pin definitions and Table 84: COMP characteristics. 3 Changed alternate function pin name “SWDAT” into “SWDIO” in all the document. Updated Section 3.9.1: Power supply schemes. Updated Section 3.15.1: Temperature sensor.
Revision history STM32L486xx Table 129. Document revision history (continued) Date 04-Dec-2015 17-Jun-2016 254/258 Downloaded from Arrow.com. Revision Changes 4 In all the document: – Stop 1 with main regulator becomes Stop 0 – Stop 1 with low-power regulator remains as Stop 1.
STM32L486xx Revision history Table 129. Document revision history (continued) Date 17-Jun-2016 06-Jul-2017 Revision Changes 5 (continued) Updated Section 3.28: Universal synchronous/asynchronous receiver transmitter (USART). Updated footnotes of Table 21: Current characteristics. Added Table 33: Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF). Updated Table 52: Low-power mode wakeup timings.
Revision history STM32L486xx Table 129. Document revision history (continued) Date 06-Jul-2017 256/258 Downloaded from Arrow.com. Revision Changes 6 (continued) – Table 35: Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS (VDD12 = 1.05 V) – Table 37: Typical current consumption in Run modes, with different codes running from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.
STM32L486xx Revision history Table 129.
STM32L486xx IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.