Datasheet

DocID028479 Rev 1 21/121
STM32F722xx STM32F723xx Functional overview
43
2.10 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex
®
-
M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs in the
STM32F722xx devices (138 GPIOs in the STM32F723xx devices) can be connected to the
16 external interrupt lines.
2.12 Clocks and startup
On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The
16
MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock can be monitored for failure. If a failure is detected, the system automatically
switches back to the internal RC oscillator and a software interrupt is generated (if enabled).
This clock source is input to a PLL thus allowing to increase the frequency up to 216
MHz.
Similarly, a full interrupt management of the PLL clock entry is available when necessary
(for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 216
MHz while the maximum frequency of the high-speed APB domains is
108
MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz.
The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio
class performance. In this case, the I
2
S and SAI master clock can generate all standard
sampling frequencies from 8
kHz to 192 kHz.
The STM32F723xx devices embed two PLLs inside the PHY HS controller: PHYPLL1 and
PHYPLL2. The PHYPLL1 allows to output 60
MHz used as an input for PHYPLL2 which
itself allows to generate the 480 Mbps in the USB OTG High Speed mode.
The PHYPLL1 has as input HSE clock.
Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.