Datasheet

DocID029162 Rev 6 23/208
STM32F413xG/H Functional overview
42
3.11 Quad-SPI memory interface (QUAD-SPI)
All devices embed a Quad-SPI memory interface, which is a specialized communication
interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode
through registers, external Flash status register polling mode and memory mapped mode.
Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or
32-bit mode. Code execution is also supported. The opcode and the frame format are fully
programmable. Communication can be performed either in single data rate or dual data
rate.
3.12 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 102 maskable interrupt channels plus the 16 interrupt lines of the
Cortex
®
-M4 with FPU.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected
to the 16 external interrupt lines.
3.14 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16
MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 100
MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.