Datasheet
Table Of Contents
- General Description
- Key Features
- Applications
- System Diagrams
- Contents
- Figures
- Tables
- Legal
- Product Family
- 1 Terms and Definitions
- 2 Block Diagram
- 3 Pinout
- 4 Characteristics
- 5 Functional Description
- 5.1 Features Description
- Driving LRA and ERM Actuators
- Automatic LRA Resonant Frequency Tracking
- Wideband LRA Support
- I2C and PWM Input Streaming
- Low Latency I2C/GPI Wake-Up from IDLE State
- Three GPI Sequence Triggers for up to Six Independent Haptic Responses
- On-Board Waveform Memory with Amplitude, Time, and Frequency Control
- Active Acceleration and Rapid Stop for High-Fidelity Haptic Feedback
- Continuous Actuator Diagnostics and Fault Handling
- No Software Requirements with Embedded Operation
- Differential Output Drive
- Current Driven System
- Configurable EMI Suppression
- Automatic Short Circuit Protection
- Ultra-Low Power Consumption with State Retention
- Ultra-Low Latency in STANDBY State
- Supply Monitoring, Reporting, and Automatic Output Limiting
- Open- and Closed-Loop Modes
- Open-Loop Sine/Custom Wave Drive Support
- Small Solution Footprint
- Additional Features
- 5.2 Functional Modes
- 5.3 Resonant Frequency Tracking
- 5.4 Active Acceleration and Rapid Stop
- 5.5 Wideband Frequency Control
- 5.6 Device Configuration and Playback
- 5.7 Advanced Operation
- 5.7.1 Frequency Tracking
- 5.7.2 Rapid Stop
- 5.7.3 Initial Impedance Update
- 5.7.4 Amplitude PID
- 5.7.5 Wideband Operation
- 5.7.6 Custom Waveform Operation
- 5.7.7 Embedded Operation
- 5.7.8 Polarity Change Reporting for Half-Period Control in DRO Mode
- 5.7.9 Loop Filter Configuration
- 5.7.10 UVLO Threshold
- 5.7.11 Edge Rate Control
- 5.7.12 Double Output Current Range
- 5.7.13 Supply Monitoring, Reporting, and Automatic Output Limiting
- 5.7.14 BEMF Fault Limit
- 5.7.15 Increasing Impedance Detection Accuracy
- 5.7.16 Frequency Pause during Rapid Stop
- 5.7.17 Frequency Pause during Rapid Stop
- 5.7.18 Coin ERM Operation
- 5.8 Waveform Memory
- 5.9 General Data Format
- 5.10 I2C Control Interface
- 5.1 Features Description
- 6 Register Overview
- 7 Package Information
- 8 Ordering Information
- 9 Application Information
- 10 Layout Guidelines
DA7280
LRA/ERM Haptic Driver with Multiple Input Triggers,
Integrated Waveform Memory and Wideband Support
Datasheet
Revision 3.0
30-Jul-2019
CFR0011-120-00
73 of 76
© 2019 Dialog Semiconductor
7.3 Moisture Sensitivity Level
The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor
lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be
exposed to an environment with a specified maximum temperature and a maximum relative humidity
before the solder reflow process. The MSL classification is defined in Table 76.
For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be
downloaded from http://www.jedec.org.
The WLCSP package is qualified for MSL 1.
The QFN package is qualified for MSL 3.
Table 76: MSL Classification
MSL Level
Floor Lifetime
Conditions
MSL 4
72 hours
30 °C / 60 % RH
MSL 3
168 hours
30 °C / 60 % RH
MSL 2A
4 weeks
30 °C / 60 % RH
MSL 2
1 year
30 °C / 60 % RH
MSL 1
Unlimited
30 °C / 85 % RH
7.4 WLCSP Handling
Manual handling of WLCSP packages should be reduced to the absolute minimum. In cases where it
is still necessary, a vacuum pick-up tool should be used. In extreme cases plastic tweezers could be
used, but metal tweezers are not acceptable, since contact may easily damage the silicon chip.
Removal of a WLCSP package will cause damage to the solder balls. Therefore, a removed sample
cannot be reused.
WLCSP packages are sensitive to visible and infrared light. Precautions should be taken to properly
shield the chip in the final product.
7.5 Soldering Information
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can
be downloaded from http://www.jedec.org.