Datasheet
Table Of Contents
- Table 1. Device summary
- 1 Introduction
- 2 Description
- Table 2. STM32F405xx and STM32F407xx: features and peripheral counts (continued)
- 2.1 Full compatibility throughout the family
- 2.2 Device overview
- 2.2.1 ARM® Cortex®-M4 core with FPU and embedded Flash and SRAM
- 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™)
- 2.2.3 Memory protection unit
- 2.2.4 Embedded Flash memory
- 2.2.5 CRC (cyclic redundancy check) calculation unit
- 2.2.6 Embedded SRAM
- 2.2.7 Multi-AHB bus matrix
- 2.2.8 DMA controller (DMA)
- 2.2.9 Flexible static memory controller (FSMC)
- 2.2.10 Nested vectored interrupt controller (NVIC)
- 2.2.11 External interrupt/event controller (EXTI)
- 2.2.12 Clocks and startup
- 2.2.13 Boot modes
- 2.2.14 Power supply schemes
- 2.2.15 Power supply supervisor
- 2.2.16 Voltage regulator
- 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability
- 2.2.18 Real-time clock (RTC), backup SRAM and backup registers
- 2.2.19 Low-power modes
- 2.2.20 VBAT operation
- 2.2.21 Timers and watchdogs
- 2.2.22 Inter-integrated circuit interface (I²C)
- 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART)
- 2.2.24 Serial peripheral interface (SPI)
- 2.2.25 Inter-integrated sound (I2S)
- 2.2.26 Audio PLL (PLLI2S)
- 2.2.27 Secure digital input/output interface (SDIO)
- 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support
- 2.2.29 Controller area network (bxCAN)
- 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS)
- 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS)
- 2.2.32 Digital camera interface (DCMI)
- 2.2.33 Random number generator (RNG)
- 2.2.34 General-purpose input/outputs (GPIOs)
- 2.2.35 Analog-to-digital converters (ADCs)
- 2.2.36 Temperature sensor
- 2.2.37 Digital-to-analog converter (DAC)
- 2.2.38 Serial wire JTAG debug port (SWJ-DP)
- 2.2.39 Embedded Trace Macrocell™
- 3 Pinouts and pin description
- 4 Memory mapping
- 5 Electrical characteristics
- 5.1 Parameter conditions
- 5.2 Absolute maximum ratings
- 5.3 Operating conditions
- 5.3.1 General operating conditions
- 5.3.2 VCAP_1/VCAP_2 external capacitor
- 5.3.3 Operating conditions at power-up / power-down (regulator ON)
- 5.3.4 Operating conditions at power-up / power-down (regulator OFF)
- 5.3.5 Embedded reset and power control block characteristics
- 5.3.6 Supply current characteristics
- Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM
- Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)
- Table 22. Typical and maximum current consumption in Sleep mode
- Table 23. Typical and maximum current consumptions in Stop mode
- Table 24. Typical and maximum current consumptions in Standby mode
- Table 25. Typical and maximum current consumptions in VBAT mode
- Table 26. Typical current consumption in Run mode, code with data processing running from Flash memory, regulator ON (ART accelerator enabled except prefetch), VDD = 1.8 V
- Table 27. Switching output I/O current consumption
- Table 28. Peripheral current consumption
- 5.3.7 Wakeup time from low-power mode
- 5.3.8 External clock source characteristics
- 5.3.9 Internal clock source characteristics
- 5.3.10 PLL characteristics
- 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics
- 5.3.12 Memory characteristics
- 5.3.13 EMC characteristics
- 5.3.14 Absolute maximum ratings (electrical sensitivity)
- 5.3.15 I/O current injection characteristics
- 5.3.16 I/O port characteristics
- 5.3.17 NRST pin characteristics
- 5.3.18 TIM timer characteristics
- 5.3.19 Communications interfaces
- Table 54. I2C analog filter characteristics
- Table 55. SPI dynamic characteristics
- Table 56. I2S dynamic characteristics
- Table 57. USB OTG FS startup time
- Table 58. USB OTG FS DC electrical characteristics
- Table 59. USB OTG FS electrical characteristics
- Table 60. USB HS DC electrical characteristics
- Table 61. USB HS clock timing parameters
- Table 62. ULPI timing
- Table 63. Ethernet DC electrical characteristics
- Table 64. Dynamic characteristics: Eternity MAC signals for SMI
- Table 65. Dynamic characteristics: Ethernet MAC signals for RMII
- Table 66. Dynamic characteristics: Ethernet MAC signals for MII
- 5.3.20 CAN (controller area network) interface
- 5.3.21 12-bit ADC characteristics
- 5.3.22 Temperature sensor characteristics
- 5.3.23 VBAT monitoring characteristics
- 5.3.24 Embedded reference voltage
- 5.3.25 DAC electrical characteristics
- 5.3.26 FSMC characteristics
- Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
- Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
- Table 77. Asynchronous multiplexed PSRAM/NOR read timings
- Table 78. Asynchronous multiplexed PSRAM/NOR write timings
- Table 79. Synchronous multiplexed NOR/PSRAM read timings
- Table 80. Synchronous multiplexed PSRAM write timings
- Table 81. Synchronous non-multiplexed NOR/PSRAM read timings
- Table 82. Synchronous non-multiplexed PSRAM write timings
- Table 83. Switching characteristics for PC Card/CF read and write cycles in attribute/common space
- Table 84. Switching characteristics for PC Card/CF read and write cycles in I/O space
- Table 85. Switching characteristics for NAND Flash read cycles
- Table 86. Switching characteristics for NAND Flash write cycles
- 5.3.27 Camera interface (DCMI) timing specifications
- 5.3.28 SD/SDIO MMC card host interface (SDIO) characteristics
- 5.3.29 RTC characteristics
- 6 Package information
- 7 Part numbering
- Appendix A Application block diagrams
- 8 Revision history
DocID022152 Rev 8 93/202
STM32F405xx, STM32F407xx Electrical characteristics
Additional current consumption
The MCU is placed under the following conditions:
• All I/O pins are configured in analog mode.
• The Flash memory access time is adjusted to f
HCLK
frequency.
• The voltage scaling is adjusted to f
HCLK
frequency as follows:
– Scale 2 for f
HCLK
≤ 144 MHz
– Scale 1 for 144 MHz < f
HCLK
≤ 168 MHz.
• The system clock is HCLK, f
PCLK1
= f
HCLK
/4, and f
PCLK2
= f
HCLK
/2.
• The HSE crystal clock frequency is 25 MHz.
• T
A
= 25 °C.
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in
Table 48: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
Table 26. Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator ON (ART accelerator enabled
except prefetch), V
DD
= 1.8 V
(1)
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals
(such as ADC or DAC) is not included.
Symbol Parameter Conditions f
HCLK
(MHz)
Typ. at T
A
=
25 °C
Unit
IDD
Supply current in
Run mode
All peripheral
disabled
160 36.2
mA
144 29.3
120 24.7
90 19.3
60 13.4
30 7.7
25 6.0