Specifications

99
}; // ArmModel
AnyFolder Drivers = {
//---------------------------------
AnyKinEqSimpleDriver ShoulderMotion = {
AnyRevoluteJoint &Jnt = Main.ArmModel.Jnts.Shoulder; // Changed!
DriverPos = {-100*pi/180};
DriverVel = {30*pi/180};
Reaction.Type = {Off};
}; // Shoulder driver
//---------------------------------
AnyKinEqSimpleDriver ElbowMotion = {
AnyRevoluteJoint &Jnt = Main.ArmModel.Jnts.Elbow; // Changed!
DriverPos = {90*pi/180};
DriverVel = {45*pi/180};
Reaction.Type = {Off};
}; // Elbow driver
}; // Driver folder
Notice that after moving the Drivers folder we have changed the references to the joints. We also have to
change the study a little bit. This is because the study points at the ArmModel folder, and that no longer
contains a movement, so the study would not know how to move the model, unless we add this line:
// =======================================================
// "The body study"
// =======================================================
AnyBodyStudy ArmStudy = {
AnyFolder &Model = .ArmModel;
AnyFolder &Drivers = .Drivers;
RecruitmentSolver = MinMaxSimplex;
Gravity = {0.0, -9.81, 0.0};
};
Now we are ready to define a couple of static drivers specifically for calibration of the muscles. We create a
CalibrationDrivers folder right below the Drivers folder:
// -----------------------------------------------------
// Calibration Drivers
// -----------------------------------------------------
AnyFolder CalibrationDrivers = {
//---------------------------------
AnyKinEqSimpleDriver ShoulderMotion = {
AnyJoint &Jnt = Main.ArmModel.Jnts.Shoulder;
DriverPos = {-90*pi/180}; // Vertical upper arm
DriverVel = {0.0};
Reaction.Type = {Off};
};
//---------------------------------
AnyKinEqSimpleDriver ElbowMotion = {
AnyJoint &Jnt = Main.ArmModel.Jnts.Elbow;
DriverPos = {30*pi/180}; // 20 degrees elbow flexion
DriverVel = {0.0};
Reaction.Type = {Off};
};
};
These drivers are static because their velocities are zero. They specify a posture with the upper arm vertical
and the elbow at 30 degrees flexion. Notice the expressions converting degrees to radians.